
 

CHAPTER 9________

PRIORITY QUEUES

9.1 PAIRING HEAPS

9.1.1 Definition

The pairing heap supports the same operations as supported by the Fibonacci
heap. Pairing heaps come in two varieties—min pairing heaps and max pairing
heaps. Min pairing heaps are used when we wish to represent a min priority
queue, and max pairing heaps are used for max priority queues. In keeping with
our discussion of Fibonacci heaps, we explicitly discuss min pairing heaps only.
Max pairing heaps are analogous. Figure 9.1 compares the actual and amortized
complexities of the Fibonacci and pairing heap operations.

Although the amortized complexities given in Figure 9.1 for pairing heap
operations are not known to be tight (i.e., no one knows of an operation sequence
whose run time actually grows logarithmically with the number of decrease key
operations (say)), it is known that the amortized complexity of the decrease key
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Operation Fibonacci Heap Pairing Heap
Actual Amortized Actual Amortized

GetMin Ο(1) Ο(1) Ο(1) Ο(1)
Insert Ο(1) Ο(1) Ο(1) Ο(1)
DeleteMin Ο(n) Ο(log n) Ο(n) Ο(log n)
Meld Ο(1) Ο(1) Ο(1) Ο(log n)
Delete Ο(n) Ο(log n) Ο(n) Ο(log n)
DecreaseKey Ο(n) Ο(1) Ο(1) Ο(log n)

Figure 9.1: Complexity of Fibonacci and pairing heap operations

operation is Ω(loglogn) (see the section titled References and Selected Readings
at the end of this chapter).

Although the amortized complexity is better when a Fibonacci heap is used
rather than when a pairing heap is used, extensive experimental studies employ-
ing these structures in the implementation of Dijkstra’s shortest paths algorithm
(Section 6.4.1) and Prim’s minimum cost spanning tree algorithm (Section 6.3.2)
indicate that pairing heaps actually outperform Fibonacci heaps.

Definition: A min pairing heap is a min tree in which the operations are per-
formed in a manner to be specified later.

Figure 9.2 shows four example min pairing heaps. Notice that a pairing
heap is a single tree, which need not be a binary tree. The min element is in the
root of this tree and hence this element may be found in Ο(1) time.

9.1.2 Meld and Insert

Two min pairing heaps may be melded into a single min pairing heap by per-
forming a compare-link operation. In a compare-link, the roots of the two min
trees are compared and the min tree that has the larger root is made the leftmost
subtree of the other tree (ties are broken arbitrarily).

To meld the min trees if Figures 9.2 (a) and (b), we compare the two roots.
Since tree (a) has the larger root, this tree becomes the leftmost subtree of tree
(b). Figure 9.3 (a) is the resulting pairing heap. Figure 9.3 (b) shows the result of
melding the pairing heaps of Figures 9.2 (c) and (d). When we meld the pairing
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Figure 9.2: Example min pairing heaps

heaps of Figures 9.3 (a) and (b), the result is the pairing heap of Figure 9.4.
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(b) Meld of Figures 9.2 (c) and (d)

Figure 9.3: Melding pairing heaps

To insert an element x into a pairing heap p, we first create a pairing heap q
with the single element x, and then meld the two pairing heaps p and q.

9.1.3 Decrease Key

Suppose we decrease the key/priority of the element in node N. When N is the
root or when the new key in N is greater than or equal to that in its parent, no
additional work is to be done. However, when the new key in N is less than that
in its parent, the min tree property is violated and corrective action is to be taken.
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Figure 9.4: Meld of Figures 9.3 (a) and (b)

For example, if the key in the root of the tree of Figure 9.2 (c) is decreased from
1 to 0, or when the key in the leftmost child of the root of Figure 9.2 (c) is
decreased from 4 to 2 no additional work is necessary. However, when the key in
the leftmost child of the root of Figure 9.2 (c) is decreased from 4 to 0 the new
value is less than that in the root (see Figure 9.5 (a)) and corrective action is
needed.
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Figure 9.5: Decreasing a key
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Since pairing heaps are normally not implemented with a parent pointer, it
is difficult to determine whether or not corrective action is needed following a
key reduction. Therefore, corrective action is taken regardless of whether or not
it is needed except when N is the tree root. The corrective action consists of the
following steps:

Step 1: Remove the subtree with root N from the tree. This results in two min
trees.

Step 2: Meld the two min trees together.

Figure 9.5 (b) shows the two min trees following Step 1, and Figure 9.5 (c)
shows the result following Step 2.

9.1.4 Delete Min

The min element is in the root of the tree. So, to delete the min element, we first
delete the root node. When the root is deleted, we are left with zero or more min
trees (i.e., the subtrees of the deleted root). When the number of remaining min
trees is two or more, these min trees must be melded into a single min tree. In
two pass pairing heaps, this melding is done as follows:

Step 1: Make a left to right pass over the trees, melding pairs of trees.

Step 2: Start with the rightmost tree and meld the remaining trees (right to left)
into this tree one at a time.

Consider the min pairing heap of Figure 9.6 (a). When the root is removed,
we get the collection of 6 min trees shown in Figure 9.6 (b).

In the left to right pass of Step 1, we first meld the trees with roots 4 and 0.
Next, the trees with roots 3 and 5 are melded. Finally, the trees with roots 1 and
6 are melded. Figure 9.7 shows the resulting three min trees.

In Step 2 (which is a right to left pass), the two rightmost trees of Figure 9.7
are first melded to get the tree of Figure 9.8 (a).

Then the tree of Figure 9.7 with root 0 is melded with the tree of Figure 9.8
to get the final min tree, which is shown in Figure 9.9.

Note that if the original pairing heap had 8 subtrees, then following the left
to right melding pass we would be left with 4 min trees. In the right to left pass,
we would first meld trees 3 and 4 to get tree 5. Then trees 2 and 5 would be
melded to get tree 6. Finally, we would meld trees 1 and 6.

In multi pass pairing heaps, the min trees that remain following the
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Figure 9.6: Deleting the min element
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Figure 9.7: Trees following first pass

removal of the root are melded into a single min tree as follows:

Step 1: Put the min trees onto a FIFO queue.

Step 2: Extract two trees from the front of the queue, meld them and put the
resulting tree at the end of the queue. Repeat this step until only one
tree remains.

Consider the six trees of Figure 9.6 (b) that result when the root of Figure
9.6 (a) is deleted. First, we meld the trees with roots 4 and 0 and put the result-
ing min tree at the end of the queue. Next, the trees with roots 3 and 5 are
melded and the resulting min tree is put at the end of the queue. And then, the
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Figure 9.9: Final min pairing heaping following a delete min

trees with roots 1 and 6 are melded and the resulting min tree added to the queue
end. The queue now contains the three min trees shown in Figure 9.7. Next, the
min trees with roots 0 and 3 are melded and the result put at the end of the queue.
We are now left with the two min trees shown in Figure 9.10.

Finally, the two min trees of Figure 9.10 are melded to get the min tree of
Figure 9.11.
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Figure 9.11: Result of multi pass delete min

9.1.5 Arbitrary Delete

Deletion from an arbitrary node N is handled as a delete-min operation when N is
the root of the pairing heap. When N is not the tree root, the deletion is done as
follows:

Step 1: Detach the subtree with root N from the tree.

Step 2: Delete node N and meld its subtrees into a single min tree using the two
pass scheme if we are implementing a two pass pairing heap or the multi
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pass scheme if we are implementing a multi pass pairing heap.

Step 3: Meld the min trees from Steps 1 and 2 into a single min tree.

9.1.6 Implementation Considerations

Although we can implement a pairing heap using nodes that have a variable
number of children fields, such an implementation is expensive because of the
need to dynamically increase the number of children fields as needed. An
efficient implementation results when we use the binary tree representation of a
tree (see Section 5.1.2.2). Siblings in the original min tree are linked together
using a doubly linked list. In addition to a data field, each node has the three
pointer fields previous, next, and child. The leftmost node in a doubly linked list
of siblings uses its previous pointer to point to its parent. A leftmost child
satisfies the property x → previous → child  = x. The doubly linked list makes it
is possible to remove an arbitrary element (as is required by the Delete and
DecreaseKey operations) in Ο(1) time.

9.1.7 Complexity

You can verify that using the described binary tree representation, all pairing
heap operations (other than Delete and DeleteMin) can be done in Ο(1) time.
The complexity of the Delete and DeleteMin operations is Ο(n), because the
number of subtrees that have to be melded following the removal of a node is
Ο(n).

The amortized complexity of the pairing heap operations is established in
the paper by Fredman et al. cited in the References and Selected Readings sec-
tion. Experimental studies conducted by Stasko and Vitter (see their paper that
is cited in the References and Selected Readings section) establish the superior-
ity of two pass pairing heaps over multipass pairing heaps.

EXERCISES

1. (a) Into an empty two pass min pairing heap, insert elements with priori-
ties 20, 10, 5, 18, 6, 12, 14, 9, 8 and 22 (in this order). Show the min
pairing heap following each insert.

(b) Delete the min element from the final min pairing heap of part (a).
Show the resulting pairing heap.
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2. (a) Into an empty multi pass min pairing heap, insert elements with
priorities 20, 10, 5, 18, 6, 12, 14, 9, 8 and 22 (in this order). Show the
min pairing heap following each insert.

(b) Delete the min element from the final min pairing heap of part (a).
Show the resulting pairing heap.

3. Fully code and test the class MultiPassPairingHeap, which impements a
multi pass min pairing heap. Your class must include the functions Get-
Min, Insert, DeleteMin , Meld, Delete and DecreaseKey . The function
Insert should return the node into which the new element was inserted.
This returned information can later be used as an input to Delete and
DecreaseKey .

4. What are the worst-case height and degree of a pairing heap that has n ele-
ments? Show how you arrived at your answer.

5. Define a one pass pairing heap as an adaptation of a two pass pairing heap
in which Step 1 (Make a left to right pass over the trees, melding pairs of
trees.) is eliminated. Show that the amortized cost of either insert or delete
min must be Θ(n).

9.2 SYMMETRIC MIN-MAX HEAPS

9.2.1 Definition and Properties

A double-ended priority queue (DEPQ) may be represented using a symmetric
min-max heap (SMMH). An SMMH is a complete binary tree in which each
node other than the root has exactly one element. The root of an SMMH is empty
and the total number of nodes in the SMMH is n +1, where n is the number of
elements. Let N be any node of the SMMH. Let elements (N) be the elements in
the subtree rooted at N but excluding the element (if any) in N. Assume that
elements (N)≠φ. N satisfies the following properties:

Q1: The left child of N has the minimum element in elements (N).

Q2: The right child of N (if any) has the maximum element in elements (N).

Figure 9.12 shows an example SMMH that has 12 elements. When N
denotes the node with 80, elements (N)={6,14,30,40}; the left child of N has the
minimum element 6 in elements (N); and the right child of N has the maximum
element 40 in elements (N). You may verify that every node N of this SMMH
satisfies properties Q1 and Q2.

It is easy to see that an n +1-node complete binary tree with an empty root
and one element in every other node is an SMMH iff the following are true:
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8 60 6 40
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Figure 9.12: A symmetric min-max heap

P1: The element in each node is less than or equal to that in its right sibling (if
any).

P2: For every node N that has a grandparent, the element in the left child of the
grandparent is less than or equal to that in N.

P3: For every node N that has a grandparent, the element in the right child of
the grandparent is greater than or equal to that in N.

Properties P2 and P3, respectively, state that the grandchildren of each
node M have elements that are greater than or equal to that in the left child of M
and less than or equal to that in the right child of M. Hence, P2 and P3 follow
from Q1 and Q2, respectively. Notice that if property P1 is satisfied, then at
most one of P2 and P3 may be violated at any node N. Using properties P1
through P3 we arrive at simple algorithms to insert and delete elements. These
algorithms are simple adaptations of the corresponding algorithms for heaps.

As we shall see, the standard DEPQ operations of Program 9.1 can be done
efficiently using an SMMH.

9.2.2 SMMH Representation

Since an SMMH is a complete binary tree, it is efficiently represented as a one-
dimensional array (say h) using the standard mapping of a complete binary tree
into an array (Section 5.2.3.1). Position 0 of h is not used and position 1, which
represents the root of the complete binary tree, is empty. We use the variable
last to denote the rightmost position of h in which we have stored an element of
the SMMH. So, the size (i.e., number of elements) of the SMMH is last−1. The
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variable arrayLength keeps track of the current number of positions in the array
h.

When n=1, the minimum and maximum elements are the same and are in
the left child of the root of the SMMH. When n>1, the minimum element is in
the left child of the root and the maximum is in the right child of the root. So, the
GetMin and GetMax operations take O (1) time each. Program 9.2 defines the
class SMMH, which implements a symmetric min-max heap. Program 9.3 gives
the constructor that creates an empty SMMH.

template <class T>
class SMMH : public DEPQ {
public:

SMMH(int initialCapacity = 10);
˜SMMH() {delete [] h;}

const T& GetMin() const
{// return min element

if (last == 1) throw QueueEmpty();
return h[2];

}

const T& GetMax() const
{// return max element

if (last == 1) throw QueueEmpty();
if (last == 2) return h[2];
else return h[3];

}

void Insert(const T&);
void DeleteMin();
void DeleteMax();

private:
int last; // position of last element in queue
int arrayLength; // queue capacity + 2
T *h; // element array

};

Program 9.2: Class definition for symmetric min-max heap
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template <class T>
SMMH<T>::SMMH(int initialCapacity)
{// Constructor.

if (initialCapacity < 1)
{

ostringstream s;
s << "Initial capacity = " << initialCapacity << " Must be > 0";
throw IllegalParameterValue(s.str());

}
arrayLength = initialCapacity + 2;
h = new T[arrayLength];
last = 1;

}

Program 9.3 Constructor for SMMH

9.2.3 Inserting into an SMMH

The algorithm to insert into an SMMH has three steps.

Step 1: Expand the size of the complete binary tree by 1, creating a new node E
for the element x that is to be inserted. This newly created node of the
complete binary tree becomes the candidate node to insert the new ele-
ment x.

Step 2: Verify whether the insertion of x into E would result in a violation of
property P1. Note that this violation occurs iff E is a right child of its
parent and x is greater than the element in the sibling of E. In case of a
P1 violation, the element in the sibling of E is moved to E and E is
updated to be the now empty sibling.

Step 3: Perform a bubble-up pass from E up the tree verifying properties P2 and
P3. In each round of the bubble-up pass, E moves up the tree by one
level. When E is positioned so that the insertion of x into E doesn’t
result in a violation of either P2 or P3, insert x into E.

Suppose we wish to insert 2 into the SMMH of Figure 9.12. Since an
SMMH is a complete binary tree, we must add a new node to the SMMH in the
position shown in Figure 9.13; the new node is labeled E. In our example, E will
denote an empty node.

If the new element 2 is placed in node E, property P2 is violated as the left
child of the grandparent of E has 6. So we move the 6 down to E and move E up
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Figure 9.13: The SMMH of Figure 9.12 with a node added

one level to obtain the configuration of Figure 9.14.

12 20 10 16 14 30 6

8 60 E 40

4 80

Figure 9.14: The SMMH of Figure 9.13 with 6 moved down

Now we determine if it is safe to insert the 2 into node E. We first notice
that such an insertion cannot result in a violation of property P1, because the pre-
vious occupant of node E was greater than 2. For properties P2 and P3, let N=E.
P3 cannot be violated for this value of N as the previous occupant of this node
was greater than 2. So, only P2 can be violated. Checking P2 with N=E, we see
that P2 will be violated if we insert x=2 into E, because the left child of the
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grandparent of E has the element 4. So we move the 4 down to E and move E up
one level to the node that previously contained the 4. Figure 9.15 shows the
resulting configuration.

12 20 10 16 14 30 6

8 60 4 40

E 80

Figure 9.15: The SMMH of Figure 9.14 with 4 moved down

For the configuration of Figure 9.15 we see that placing 2 into node E can-
not violate property P1, because the previous occupant of node E was greater
than 2. Also properties P2 and P3 cannot be violated, because node E has no
grandparent. So we insert 2 into node E and obtain Figure 9.16.

12 20 10 16 14 30 6

8 60 4 40

2 80

Figure 9.16: The SMMH of Figure 9.15 with 2 inserted
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Let us now insert 50 into the SMMH of Figure 9.16. Since an SMMH is a
complete binary tree, the new node must be positioned as in Figure 9.17.

12 20 10 16 14 30 6 E

8 60 4 40

2 80

Figure 9.17: The SMMH of Figure 9.16 with a node added

Since E is the right child of its parent, we first check P1 at node E. If the
new element (in this case 50) is smaller than that in the left sibling of E, we swap
the new element and the element in the left sibling. In our case, no swap is done.
Then we check P2 and P3. We see that placing 50 into E would violate P3. So
the element 40 in the right child of the grandparent of E is moved down to node
E. Figure 9.18 shows the resulting configuration. Placing 50 into node E of Fig-
ure 9.18 cannot create a P1 violation because the previous occupant of node E
was smaller. A P2 violation isn’t possible either. So only P3 needs to be checked
at E. Since there is no P3 violation at E, 50 is placed into E.

Program 9.4 gives the C++ code for the insert operation; the variable
currentNode refers to the empty node E of our example. Since the height of a
complete binary tree is O (log n) and Program 9.4 does O (1) work at each level
of the SMMH, the complexity of the insert function is O (log n).

9.2.4 Deleting from an SMMH

The algorithm to delete either the min or max element is an adaptation of the
trickle-down algorithm used to delete an element from a min or a max heap. We
consider only the case when the minimum element is to be deleted. If the SMMH
is empty, the deletion cannot be performed. So, assume we have a non-empty
SMMH. The minimum element is in h [2]. If last=2, the SMMH becomes empty
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Figure 9.18: The SMMH of Figure 9.17 with 40 moved down

following the deletion. Assume that last≠2. Let x=h [last ] and decrement last by
1. To complete the deletion, we must reinsert x into an SMMH whose h [2] node
is empty. Let E denote the empty node. We follow a path from E down the tree,
as in the delete algorithm for a min or max heap, verifying properties P1 and P2
until we reach a suitable node into which x may be inserted. In the case of a
delete-min operation, the trickle-down process cannot cause a P3 violation. So,
we don’t explicitly verify P3.

Consider the SMMH of Figure 9.18 with 50 in the node labeled E. A
delete min results in the removal of 2 from the left child of the root (i.e., h [2])
and the removal of the last node (i.e., the one with 40) from the SMMH. So,
x=40 and we have the configuration shown in Figure 9.19. Since h [3] has the
maximum element, P1 cannot be violated at E. Further, since E is the left child of
its parent, no P3 violations can result from inserting x into E. So we need only
concern ourselves with P2 violations. To detect such a violation, we determine
the smaller of the left child of E and the left child of E’s right sibling. For our
example, the smaller of 8 and 4 is determined. This smaller element 4 is, by
definition of an SMMH, the smallest element in the SMMH. Since 4<x=40,
inserting x into E would result in a P2 violation. To avoid this, we move the 4
into node E and the node previously occupied by 4 becomes E (see Figure 9.20).
Notice that if 4 ≥ x, inserting x into E would result in a properly structured
SMMH.

Now the new E becomes the candidate node for the insertion of x. First, we
check for a possible P1 violation that may result from such an insertion. Since
x=40<50, no P1 violation results. Then we check for a P2 violation. The left
children of E and its sibling are 14 and 6. The smaller child, 6, is smaller than x.
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template <class T>
void SMMH<T>::Insert(const T& x)
{// Insert x into the SMMH.

// increase array length if necessary
if (last == arrayLength − 1)
{// double array length

ChangeLength1D(h, arrayLength, 2 * arrayLength);
arrayLength *= 2;

}
// find place for x
// currentNode starts at new leaf and moves up tree
int currentNode = ++last;
if (last % 2 == 1 && x < h[last − 1])
{// left sibling must be smaller, P1

h[last] = h[last − 1];
currentNode− −;

}
bool done = false;
while (!done && currentNode >= 4)
{// currentNode has a grandparent

int gp = currentNode / 4; // grandparent
int lcgp = 2 * gp; // left child of gp
int rcgp = lcgp + 1; // right child of gp
if (x < h[lcgp])
{// P2 is violated

h[currentNode] = h[lcgp];
currentNode = lcgp;

}
else if (x > h[rcgp])

{// P3 is violated
h[currentNode] = h[rcgp];
currentNode = rcgp;

}
else done = true; // neither P2 nor P3 violated

}
h[currentNode] = x;

}

Program 9.4: Insertion into a symmetric min-max heap
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12 20 10 16 14 30 6

8 60 4 50

E 80

x=40

Figure 9.19: The SMMH of Figure 9.18 with 2 deleted

12 20 10 16 14 30 6

8 60 E 50

4 80

x=40

Figure 9.20: The SMMH of Figure 9.19 with E and 4 interchanged

So, x cannot be inserted into E. Rather, we swap E and 6 to get the configuration
of Figure 9.21.

We now check the P1 property at the new E. Since E doesn’t have a right
sibling, there is no P1 violation. We proceed to check the P2 property. Since E
has no children, a P2 violation isn’t possible either. So, x is inserted into E. Let’s
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12 20 10 16 14 30 E

8 60 6 50

4 80

x=40

Figure 9.21: The SMMH of Figure 9.20 with E and 6 interchanged

consider another delete-min operation. This time, we delete the minimum ele-
ment from the SMMH of Figure 9.21 (recall that the node labeled E contains 40).
The min element 4 is removed from h [2] and the last element, 40, is removed
from the SMMH and placed in x. Figure 9.22 shows the resulting configuration.

12 20 10 16 14 30

8 60 6 50

E 80

x=40

Figure 9.22: First step of another delete min

As before, a P1 violation isn’t possible at h [2]. The smaller of the left
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children of E and its sibling is 6. Since 6<x=40, we interchange 6 and E to get
Figure 9.23.

12 20 10 16 14 30

8 60 E 50

6 80

x=40

Figure 9.23: The SMMH of Figure 9.22 with E and 6 interchanged

Next, we check for a possible P1 violation at the new E. Since the sibling
of E is 50 and x=40 ≤ 50, no P1 violation is detected. The smaller left child of E
and its sibling is 14 (actually, the sibling doesn’t have a left child, so we just use
the left child of E), which is <x. So, we swap E and 14 to get Figure 9.24.

Since there is a P1 violation at the new E, we swap x and 30 to get Figure
9.25 and proceed to check for a P2 violation at the new E. As there is no P2 vio-
lation here, x=30 is inserted into E.

We leave the development of the code for the delete operations as an exer-
cise. However, you should note that these operations spend O (1) time per level
during the trickle-down pass. So, their complexity is O (log n).

EXERCISES

1. Show that every complete binary tree with an empty root and one element
in every other node is an SMMH iff P1 through P3 are true.

2. Start with an empty SMMH and insert the elements 20, 10, 40, 3, 2, 7, 60, 1
and 80 (in this order) using the insertion algorithm developed in this sec-
tion. Draw the SMMH following each insert.

3. Perform 3 delete-min operations on the SMMH of Figure 9.25 with 30 in
the node E. Use the delete min strategy described in this section. Draw the
SMMH following each delete min.
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12 20 10 16 E 30

8 60 14 50

6 80

x=40

Figure 9.24: The SMMH of Figure 9.23 with E and 14 interchanged

12 20 10 16 E 40

8 60 14 50

6 80

x=30

Figure 9.25: The SMMH of Figure 9.24 with x and 30 interchanged

4. Perform 4 delete max operations on the SMMH of Figure 9.25 with 30 in
the node E. Adapt the delete min strategy of this section to the delete max
operation. Draw the SMMH following each delete max operation.

5. Develop the code for all functions of the class SMMH (Program 9.2). Test
all functions using your own test data.
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9.3 INTERVAL HEAPS

9.3.1 Definition and Properties

Like an SMMH, an interval heap is a heap inspired data structure that may be
used to represent a DEPQ. An interval heap is a complete binary tree in which
each node, except possibly the last one (the nodes of the complete binary tree are
ordered using a level order traversal), contains two elements. Let the two ele-
ments in a node be a and b, where a ≤ b. We say that the node represents the
closed interval [a,b ]. a is the left end point of the node’s interval and b is its
right end point.

The interval [c,d ] is contained in the interval [a,b ] iff a ≤ c  ≤ d ≤ b. In an
interval heap, the intervals represented by the left and right children (if they
exist) of each node P are contained in the interval represented by P. When the
last node contains a single element c, then a ≤ c  ≤ b, where [a,b ] is the interval
of the parent (if any) of the last node.

Figure 9.26 shows an interval heap with 26 elements. You may verify that
the intervals represented by the children of any node P are contained in the inter-
val of P.

4,10 5,11 5,9 4,7 8,8 7,9

4,12 3,11 5,10 6,15

3,17 4,15

2,30

Figure 9.26: An interval heap

The following facts are immediate:

(1) The left end points of the node intervals define a min heap, and the right
end points define a max heap. In case the number of elements is odd, the
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last node has a single element which may be regarded as a member of
either the min or max heap. Figure 9.27 shows the min and max heaps
defined by the interval heap of Figure 9.26.
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Figure 9.27: Min and max heaps embedded in Figure 9.26

(2) When the root has two elements, the left end point of the root is the
minimum element in the interval heap and the right end point is the max-
imum. When the root has only one element, the interval heap contains just
one element. This element is both the minimum and maximum element.

(3) An interval heap can be represented compactly by mapping into an array as
is done for ordinary heaps. However, now, each array position must have
space for two elements.

(4) The height of an interval heap with n elements is Θ(log n).

9.3.2 Inserting into an Interval Heap

Suppose we are to insert an element into the interval heap of Figure 9.26. Since
this heap currently has an even number of elements, the heap following the inser-
tion will have an additional node A as is shown in Figure 9.28.

The interval for the parent of the new node A is [6,15]. Therefore, if the
new element is between 6 and 15, the new element may be inserted into node A.
When the new element is less than the left end point 6 of the parent interval, the
new element is inserted into the min heap embedded in the interval heap. This
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4,10 5,11 5,9 4,7 8,8 7,9 A

4,12 3,11 5,10 6,15

3,17 4,15

2,30

Figure 9.28: Interval heap of Figure 9.26 after one node is added

insertion is done using the min heap insertion procedure starting at node A.
When the new element is greater than the right end point 15 of the parent inter-
val, the new element is inserted into the max heap embedded in the interval
heap. This insertion is done using the max heap insertion procedure starting at
node A.

If we are to insert the element 10 into the interval heap of Figure 9.26, this
element is put into the node A shown in Figure 9.28. To insert the element 3, we
follow a path from node A towards the root, moving left end points down until
we either pass the root or reach a node whose left end point is ≤ 3. The new ele-
ment is inserted into the node that now has no left end point. Figure 9.29 shows
the resulting interval heap.

To insert the element 40 into the interval heap of Figure 9.26, we follow a
path from node A (see Figure 9.28) towards the root, moving right end points
down until we either pass the root or reach a node whose right end point is ≥ 40.
The new element is inserted into the node that now has no right end point. Figure
9.30 shows the resulting interval heap.

Now, suppose we wish to insert an element into the interval heap of Figure
9.30. Since this interval heap has an odd number of elements, the insertion of the
new element does not increase the number of nodes. The insertion procedure is
the same as for the case when we initially have an even number of elements. Let
A denote the last node in the heap. If the new element lies within the interval
[6,15] of the parent of A, then the new element is inserted into node A (the new
element becomes the left end point of A if it is less than the element currently in
A). If the new element is less than the left end point 6 of the parent of A, then the
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4,10 5,11 5,9 4,7 8,8 7,9 6

4,12 3,11 5,10 4,15

3,17 3,15

2,30

Figure 9.29: The interval heap of Figure 9.26 with 3 inserted

4,10 5,11 5,9 4,7 8,8 7,9 15

4,12 3,11 5,10 6,15

3,17 4,30

2,40

Figure 9.30: The interval heap of Figure 9.26 with 40 inserted

new element is inserted into the embedded min heap; otherwise, the new element
is inserted into the embedded max heap. Figure 9.31 shows the result of insert-
ing the element 32 into the interval heap of Figure 9.30.
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4,10 5,11 5,9 4,7 8,8 7,9 15,15

4,12 3,11 5,10 6,30
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Figure 9.31: The interval heap of Figure 9.30 with 32 inserted

9.3.3 Deleting the Min Element

The removal of the minimum element is handled as several cases:

(1) When the interval heap is empty, the DeleteMin operation fails.

(2) When the interval heap has only one element, this element is the element to
be returned. We leave behind an empty interval heap.

(3) When there is more than one element, the left end point of the root is to be
returned. This point is removed from the root. If the root is the last node of
the interval heap, nothing more is to be done. When the last node is not the
root node, we remove the left point p from the last node. If this causes the
last node to become empty, the last node is no longer part of the heap. The
point p removed from the last node is reinserted into the embedded min
heap by beginning at the root. As we move down, it may be necessary to
swap the current p with the right end point r of the node being examined to
ensure that p ≤ r. The reinsertion is done using the same strategy as used
to reinsert into an ordinary heap.

Let us remove the minimum element from the interval heap of Figure 9.31.
First, the element 2 is removed from the root. Next, the left end point 15 is
removed from the last node and we begin the reinsertion procedure at the root.
The smaller of the min heap elements that are the children of the root is 3. Since
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this element is smaller than 15, we move the 3 into the root (the 3 becomes the
left end point of the root) and position ourselves at the left child B of the root.
Since, 15 ≤ 17 we do not swap the right end point of B with the current p=15.
The smaller of the left end points of the children of B is 3. The 3 is moved from
node C into node B as its left end point and we position ourselves at node C.
Since p=15>11, we swap the two and 15 becomes the right end point of node C.
The smaller of left end points of Cs children is 4. Since this is smaller than the
current p=11, it is moved into node C as this node’s left end point. We now posi-
tion ourselves at node D. First, we swap p=11 and Ds right end point. Now,
since D has no children, the current p=7 is inserted into node D as Ds left end
point. Figure 9.32 shows the result.

4,10 5,11 5,9 7,11 8,8 7,9 15

4,12 4,15 5,10 6,30

3,17 4,32

3,40

Figure 9.32: The interval heap of Figure 9.31 with minimum element removed

The max element may be removed using an analogous procedure.

9.3.4 Initializing an Interval Heap

Interval heaps may be initialized using a strategy similar to that used to initialize
ordinary heaps—work your way from the heap bottom to the root ensuring that
each subtree is an interval heap. For each subtree, first order the elements in the
root; then reinsert the left end point of this subtree’s root using the reinsertion
strategy used for the DeleteMin operation, then reinsert the right end point of this
subtree’s root using the strategy used for the DeleteMax operation.
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9.3.5 Complexity of Interval Heap Operations

The operations GetMin () and GetMax () take Ο(1) time each; Insert (x), Delete-
Min (), and DeleteMax () take Ο(log n) each; and initializing an n element inter-
val heap takes Θ(n) time.

9.3.6 The Complementary Range Search Problem

In the complementary range search problem, we have a dynamic collection (i.e.,
points are added and removed from the collection as time goes on) of one-
dimensional points (i.e., points have only an x-coordinate associated with them)
and we are to answer queries of the form: what are the points outside of the inter-
val [a,b ]? For example, if the point collection is 3,4,5,6,8,12, the points outside
the range [5,7] are 3,4,8,12.

When an interval heap is used to represent the point collection, a new point
can be inserted or an old one removed in Ο(log n) time, where n is the number of
points in the collection. Note that given the location of an arbitrary element in
an interval heap, this element can be removed from the interval heap in Ο(log n)
time using an algorithm similar to that used to remove an arbitrary element from
a heap.

The complementary range query can be answered in Θ(k) time, where k is
the number of points outside the range [a,b ]. This is done using the following
recursive procedure:

Step 1: If the interval tree is empty, return.

Step 2: If the root interval is contained in [a,b ], then all points are in the range
(therefore, there are no points to report), return.

Step 3: Report the end points of the root interval that are not in the range [a,b ].

Step 4: Recursively search the left subtree of the root for additional points that
are not in the range [a,b ].

Step 5: Recursively search the right subtree of the root for additional points that
are not in the range [a,b ].

Step 6: return.

Let us try this procedure on the interval heap of Figure 9.31. The query
interval is [4,32]. We start at the root. Since the root interval is not contained in
the query interval, we reach step 3 of the procedure. Whenever step 3 is reached,
we are assured that at least one of the end points of the root interval is outside
the query interval. Therefore, each time step 3 is reached, at least one point is
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reported. In our example, both points 2 and 40 are outside the query interval and
are reported. We then search the left and right subtrees of the root for additional
points. When the left subtree is searched, we again determine that the root inter-
val is not contained in the query interval. This time only one of the root interval
points (i.e., 3) is outside the query range. This point is reported and we proceed
to search the left and right subtrees of B for additional points outside the query
range. Since the interval of the left child of B is contained in the query range, the
left subtree of B contains no points outside the query range. We do not explore
the left subtree of B further. When the right subtree of B is searched, we report
the left end point 3 of node C and proceed to search the left and right subtrees of
C. Since the intervals of the roots of each of these subtrees is contained in the
query interval, these subtrees are not explored further. Finally, we examine the
root of the right subtree of the overall tree root, that is the node with interval
[4,32]. Since this node’s interval is contained in the query interval, the right sub-
tree of the overall tree is not searched further.

We say that a node is visited if its interval is examined in Step 2. With this
definition of visited, we see that the complexity of the above six step procedure
is Θ(number of nodes visited). The nodes visited in the preceding example are
the root and its two children, the two children of node B, and the two children of
node C. So, 7 nodes are visited and a total of 4 points are reported.

We show that the total number of interval heap nodes visited is at most
3k+1, where k is the number of points reported. If a visited node reports one or
two points, give the node a count of one. If a visited node reports no points, give
it a count of zero and add one to the count of its parent (unless the node is the
root and so has no parent). The number of nodes with a nonzero count is at most
k. Since no node has a count more than 3, the sum of the counts is at most 3k.
Accounting for the possibility that the root reports no point, we see that the
number of nodes visited is at most 3k +1. Therefore, the complexity of the search
is Θ(k). This complexity is asymptotically optimal because every algorithm that
reports k points must spend at least Θ(1) time per reported point.

In our example search, the root gets a count of 2 (1 because it is visited and
reports at least one point and another 1 because its right child is visited but
reports no point), node B gets a count of 2 (1 because it is visited and reports at
least one point and another 1 because its left child is visited but reports no point),
and node C gets a count of 3 (1 because it is visited and reports at least one point
and another 2 because its left and right children are visited and neither reports a
point). The count for each of the remaining nodes in the interval heap is 0.

EXERCISES

1. Start with an empty interval heap and insert the elements 20, 10, 40, 3, 2, 7,
60, 1 and 80 (in this order) using the insertion algorithm developed in this
section. Draw the interval heap following each insert.
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2. Perform 3 delete-min operations on the interval heap of Figure 9.32. Use
the delete min strategy described in this section. Draw the interval heap
following each delete min.

3. Perform 4 delete max operations on the interval heap of Figure 9.32. Adapt
the delete min strategy of this section to the delete max operation. Draw
the interval heap following each delete max operation.

4. Develop the code for all functions of the class IntervalHeap, which imple-
ments the interval heap data structure and derives from the virtual class
DEPQ. In addition to the functions specified in DEPQ you also must code
the initialization function and a function for the complementary range
search operation. Test all functions using your own test data.

5. The min-max heap is an alternative heap inspired data structure for the
representation of a DEPQ. A min-max heap is a complete binary tree in
which each node has exactly one element. Alternating levels of this tree
are min levels and max levels, respectively. The root is on a min level. Let
x be any node in a min-max heap. If x is on a min (max) level then the ele-
ment in x has the minimum (maximum) priority from among all elements in
the subtree with root x. A node on a min (max) level is called a min (max)
node. Figure 9.33 shows an example 12-elements min-max heap. We use
shaded circles for max nodes and unshaded circles for min nodes.

45 50 30 20 12

30 9 10 15

70 40

7

max

min

max

min

Figure 9.33: A 12-element min-max heap

Fully code and test the class MinMaxHeap, which impements a min-max
heap using a one-dimensional array for the complete binary tree. Your
class must provide an implementation for all DEPQ functions. The
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complexity of GetMin and GetMax should be Ο(1) and that for the remain-
ing DEPQ functions should be Ο(log n).
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