
Neural Network Toolbox™

Reference

R2013a

Mark Hudson Beale
Martin T. Hagan
Howard B. Demuth

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Neural Network Toolbox™ Reference

© COPYRIGHT 1992–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
June 1992 First printing
April 1993 Second printing
January 1997 Third printing
July 1997 Fourth printing
January 1998 Fifth printing Revised for Version 3 (Release 11)
September 2000 Sixth printing Revised for Version 4 (Release 12)
June 2001 Seventh printing Minor revisions (Release 12.1)
July 2002 Online only Minor revisions (Release 13)
January 2003 Online only Minor revisions (Release 13SP1)
June 2004 Online only Revised for Version 4.0.3 (Release 14)
October 2004 Online only Revised for Version 4.0.4 (Release 14SP1)
October 2004 Eighth printing Revised for Version 4.0.4
March 2005 Online only Revised for Version 4.0.5 (Release 14SP2)
March 2006 Online only Revised for Version 5.0 (Release 2006a)
September 2006 Ninth printing Minor revisions (Release 2006b)
March 2007 Online only Minor revisions (Release 2007a)
September 2007 Online only Revised for Version 5.1 (Release 2007b)
March 2008 Online only Revised for Version 6.0 (Release 2008a)
October 2008 Online only Revised for Version 6.0.1 (Release 2008b)
March 2009 Online only Revised for Version 6.0.2 (Release 2009a)
September 2009 Online only Revised for Version 6.0.3 (Release 2009b)
March 2010 Online only Revised for Version 6.0.4 (Release 2010a)
September 2010 Online only Revised for Version 7.0 (Release 2010b)
April 2011 Online only Revised for Version 7.0.1 (Release 2011a)
September 2011 Online only Revised for Version 7.0.2 (Release 2011b)
March 2012 Online only Revised for Version 7.0.3 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.0.1 (Release 2013a)

Contents

Functions — Alphabetical List

1

Index

v

vi Contents

1

Functions — Alphabetical
List

adapt

Purpose Adapt neural network to data as it is simulated

Syntax [net,Y,E,Pf,Af,tr] = adapt(net,P,T,Pi,Ai)

To Get
Help

Type help network/adapt.

Description This function calculates network outputs and errors after each
presentation of an input.

[net,Y,E,Pf,Af,tr] = adapt(net,P,T,Pi,Ai) takes

net Network

P Network inputs

T Network targets (default = zeros)

Pi Initial input delay conditions (default = zeros)

Ai Initial layer delay conditions (default = zeros)

and returns the following after applying the adapt function
net.adaptFcn with the adaption parameters net.adaptParam:

net Updated network

Y Network outputs

E Network errors

Pf Final input delay conditions

Af Final layer delay conditions

tr Training record (epoch and perf)

Note that T is optional and is only needed for networks that require
targets. Pi and Pf are also optional and only need to be used for
networks that have input or layer delays.

1-2

adapt

adapt’s signal arguments can have two formats: cell array or matrix.

The cell array format is easiest to describe. It is most convenient for
networks with multiple inputs and outputs, and allows sequences of
inputs to be presented,

P Ni-by-TS cell array Each element P{i,ts} is an
Ri-by-Q matrix.

T Nt-by-TS cell array Each element T{i,ts} is a
Vi-by-Q matrix.

Pi Ni-by-ID cell array Each element Pi{i,k} is an
Ri-by-Q matrix.

Ai Nl-by-LD cell array Each element Ai{i,k} is an
Si-by-Q matrix.

Y No-by-TS cell array Each element Y{i,ts} is a
Ui-by-Q matrix.

E No-by-TS cell array Each element E{i,ts} is a
Ui-by-Q matrix.

Pf Ni-by-ID cell array Each element Pf{i,k} is an
Ri-by-Q matrix.

Af Nl-by-LD cell array Each element Af{i,k} is an
Si-by-Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

No = net.numOutputs

ID = net.numInputDelays

LD = net.numLayerDelays

TS = Number of time steps

1-3

adapt

Q = Batch size

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Ui = net.outputs{i}.size

The columns of Pi, Pf, Ai, and Af are ordered from oldest delay
condition to most recent:

Pi{i,k} = Input i at time ts = k - ID

Pf{i,k} = Input i at time ts = TS + k - ID

Ai{i,k} = Layer output i at time ts = k - LD

Af{i,k} = Layer output i at time ts = TS + k - LD

The matrix format can be used if only one time step is to be simulated
(TS = 1). It is convenient for networks with only one input and output,
but can be used with networks that have more.

Each matrix argument is found by storing the elements of the
corresponding cell array argument in a single matrix:

P (sum of Ri)-by-Q matrix

T (sum of Vi)-by-Q matrix

Pi (sum of Ri)-by-(ID*Q) matrix

Ai (sum of Si)-by-(LD*Q) matrix

Y (sum of Ui)-by-Q matrix

E (sum of Ui)-by-Q matrix

Pf (sum of Ri)-by-(ID*Q) matrix

Af (sum of Si)-by-(LD*Q) matrix

1-4

adapt

Examples Here two sequences of 12 steps (where T1 is known to depend on P1) are
used to define the operation of a filter.

p1 = {-1 0 1 0 1 1 -1 0 -1 1 0 1};
t1 = {-1 -1 1 1 1 2 0 -1 -1 0 1 1};

Here linearlayer is used to create a layer with an input range of [-1
1], one neuron, input delays of 0 and 1, and a learning rate of 0.5. The
linear layer is then simulated.

net = linearlayer([0 1],0.5);

Here the network adapts for one pass through the sequence.

The network’s mean squared error is displayed. (Because this is the
first call to adapt, the default Pi is used.)

[net,y,e,pf] = adapt(net,p1,t1);
mse(e)

Note that the errors are quite large. Here the network adapts to another
12 time steps (using the previous Pf as the new initial delay conditions).

p2 = {1 -1 -1 1 1 -1 0 0 0 1 -1 -1};
t2 = {2 0 -2 0 2 0 -1 0 0 1 0 -1};
[net,y,e,pf] = adapt(net,p2,t2,pf);
mse(e)

Here the network adapts for 100 passes through the entire sequence.

p3 = [p1 p2];
t3 = [t1 t2];
net.adaptParam.passes = 100;
[net,y,e] = adapt(net,p3,t3);
mse(e)

1-5

adapt

The error after 100 passes through the sequence is very small. The
network has adapted to the relationship between the input and target
signals.

Algorithms adapt calls the function indicated by net.adaptFcn, using the adaption
parameter values indicated by net.adaptParam.

Given an input sequence with TS steps, the network is updated as
follows: Each step in the sequence of inputs is presented to the network
one at a time. The network’s weight and bias values are updated after
each step, before the next step in the sequence is presented. Thus the
network is updated TS times.

See Also sim | init | train | revert

1-6

adaptwb

Purpose Adapt network with weight and bias learning rules

Syntax [net,ar,Ac] = adapt(net,Pd,T,Ai)

Description This function is normally not called directly, but instead called
indirectly through the function adapt after setting a network’s adaption
function (net.adaptFcn) to this function.

[net,ar,Ac] = adapt(net,Pd,T,Ai) takes these arguments,

net Neural network

Pd Delayed processed input states and inputs

T Targets

Ai Initial layer delay states

and returns

net Neural network after adaption

ar Adaption record

Ac Combined initial layer states and layer outputs

Examples Linear layers use this adaption function. Here a linear layer with input
delays of 0 and 1, and a learning rate of 0.5, is created and adapted to
produce some target data t when given some input data x. The response
is then plotted, showing the network’s error going down over time.

x = {-1 0 1 0 1 1 -1 0 -1 1 0 1};
t = {-1 -1 1 1 1 2 0 -1 -1 0 1 1};
net = linearlayer([0 1],0.5);
net.adaptFcn
[net,y,e,xf] = adapt(net,x,t);
plotresponse(t,y)

1-7

adaptwb

See Also adapt

1-8

adddelay

Purpose Add delay to neural network response

Syntax net = adddelay(net,n)

Description net = adddelay(net,n) takes these arguments,

net Neural network

n Number of delays

and returns the network with input delay connections increased, and
output feedback delays decreased, by the specified number of delays n.
The result is a network which behaves identically, except that outputs
are produced n timesteps later.

If the number of delays n is not specified, a default of one delay is used.

Examples Here a time delay network is created, trained and simulated in its
original form on an input time series X and target series T. It is then
simulated with a delay removed and then added back. These first and
third outputs will be identical, while the second will be shifted by one
timestep.

[X,T] = simpleseries_dataset;
net = timedelaynet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi);
y1 = net(Xs)
net2 = removedelay(net);
[Xs,Xi,Ai,Ts] = preparets(net2,X,T);
y2 = net2(Xs,Xi)
net3 = adddelay(net2)
[Xs,Xi,Ai,Ts] = preparets(net3,X,T);
y3 = net3(Xs,Xi)

See Also closeloop | openloop | removedelay

1-9

boxdist

Purpose Distance between two position vectors

Syntax d = boxdist(pos)

Description boxdist is a layer distance function that is used to find the distances
between the layer’s neurons, given their positions.

d = boxdist(pos) takes one argument,

pos N-by-S matrix of neuron positions

and returns the S-by-S matrix of distances.

boxdist is most commonly used with layers whose topology function
is gridtop.

Examples Here you define a random matrix of positions for 10 neurons arranged
in three-dimensional space and then find their distances.

pos = rand(3,10);
d = boxdist(pos)

Network
Use

To change a network so that a layer’s topology uses boxdist, set
net.layers{i}.distanceFcn to 'boxdist'.

In either case, call sim to simulate the network with boxdist.

Algorithms The box distance D between two position vectors Pi and Pj from a set of
S vectors is

Dij = max(abs(Pi-Pj))

See Also dist | linkdist | mandist | sim

1-10

bttderiv

Purpose Backpropagation through time derivative function

Syntax bttderiv('dperf_dwb',net,X,T,Xi,Ai,EW)
bttderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description This function calculates derivatives using the chain rule from a
network’s performance back through the network, and in the case of
dynamic networks, back through time.

bttderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network

X Inputs, an RxQ matrix (or NxTS cell array of RixQ
matrices)

T Targets, an SxQ matrix (or MxTS cell array of
SixQ matrices)

Xi Initial input delay states (optional)

Ai Initial layer delay states (optional)

EW Error weights (optional)

and returns the gradient of performance with respect to the network’s
weights and biases, where R and S are the number of input and output
elements and Q is the number of samples (and N and M are the number
of input and output signals, Ri and Si are the number of each input and
outputs elements, and TS is the number of timesteps).

bttderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of
errors with respect to the network’s weights and biases.

Examples Here a feedforward network is trained and both the gradient and
Jacobian are calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);

1-11

bttderiv

net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = bttderiv('dperf_dwb',net,x,t)
jwb = bttderiv('de_dwb',net,x,t)

See Also defaultderiv | fpderiv | num2deriv | num5deriv | staticderiv

1-12

cascadeforwardnet

Purpose Cascade-forward neural network

Syntax cascadeforwardnet(hiddenSizes,trainFcn)

Description Cascade-forward networks are similar to feed-forward networks,
but include a connection from the input and every previous layer to
following layers.

As with feed-forward networks, a two-or more layer cascade-network
can learn any finite input-output relationship arbitrarily well given
enough hidden neurons.

cascadeforwardnet(hiddenSizes,trainFcn) takes these arguments,

hiddenSizes Row vector of one or more hidden layer sizes
(default = 10)

trainFcn Training function (default = 'trainlm')

and returns a new cascade-forward neural network.

Examples Here a cascade network is created and trained on a simple fitting
problem.

[x,t] = simplefit_dataset;
net = cascadeforwardnet(10);
net = train(net,x,t);
view(net)
y = net(x)
perf = perform(net,y,t)

See Also feedforwardnet

1-13

catelements

Purpose Concatenate neural network data elements

Syntax catelements(x1,x2,...,xn)
[x1; x2; ... xn]

Description catelements(x1,x2,...,xn) takes any number of neural network
data values, and merges them along the element dimension (i.e., the
matrix row dimension).

If all arguments are matrices, this operation is the same as [x1; x2;
... xn].

If any argument is a cell array, then all non-cell array arguments are
enclosed in cell arrays, and then the matrices in the same positions in
each argument are concatenated.

Examples This code concatenates the elements of two matrix data values.

x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6; 2 9 1]
y = catelements(x1,x2)

This code concatenates the elements of two cell array data values.

x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3] [4 5 6]; [2 5 4] [9 7 5]}
y = catelements(x1,x2)

See Also nndata | numelements | getelements | setelements | catsignals |
catsamples | cattimesteps

1-14

catsamples

Purpose Concatenate neural network data samples

Syntax catsamples(x1,x2,...,xn)
[x1 x2 ... xn]
catsamples(x1,x2,...,xn,'pad',v)

Description catsamples(x1,x2,...,xn) takes any number of neural network data
values, and merges them along the samples dimension (i.e., the matrix
column dimension).

If all arguments are matrices, this operation is the same as [x1 x2
... xn].

If any argument is a cell array, then all non-cell array arguments are
enclosed in cell arrays, and then the matrices in the same positions in
each argument are concatenated.

catsamples(x1,x2,...,xn,'pad',v) allows samples with varying
numbers of timesteps (columns of cell arrays) to be concatenated by
padding the shorter time series with the value v, until they are the
same length as the longest series. If v is not specified, then the value
NaN is used, which is often used to represent unknown or don’t-care
inputs or targets.

Examples This code concatenates the samples of two matrix data values.

x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6]
y = catsamples(x1,x2)

This code concatenates the samples of two cell array data values.

x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]}
y = catsamples(x1,x2)

Here the samples of two cell array data values, with unequal numbers
of timesteps, are concatenated.

1-15

catsamples

x1 = {1 2 3 4 5};
x2 = {10 11 12};
y = catsamples(x1,x2,'pad')

See Also nndata | numsamples | getsamples | setsamples | catelements |
catsignals | cattimesteps

1-16

catsignals

Purpose Concatenate neural network data signals

Syntax catsignals(x1,x2,...,xn)
{x1; x2; ...; xn}

Description catsignals(x1,x2,...,xn) takes any number of neural network data
values, and merges them along the element dimension (i.e., the cell
row dimension).

If all arguments are matrices, this operation is the same as {x1; x2;
...; xn}.

If any argument is a cell array, then all non-cell array arguments are
enclosed in cell arrays, and the cell arrays are concatenated as [x1;
x2; ...; xn].

Examples This code concatenates the signals of two matrix data values.

x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6]
y = catsignals(x1,x2)

This code concatenates the signals of two cell array data values.

x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]}
y = catsignals(x1,x2)

See Also nndata | numsignals | getsignals | setsignals | catelements |
catsamples | cattimesteps

1-17

cattimesteps

Purpose Concatenate neural network data timesteps

Syntax cattimesteps(x1,x2,...,xn)
{x1 x2 ... xn}

Description cattimesteps(x1,x2,...,xn) takes any number of neural network
data values, and merges them along the element dimension (i.e., the
cell column dimension).

If all arguments are matrices, this operation is the same as {x1 x2
... xn}.

If any argument is a cell array, all non-cell array arguments are
enclosed in cell arrays, and the cell arrays are concatenated as [x1
x2 ... xn].

Examples This code concatenates the elements of two matrix data values.

x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6]
y = cattimesteps(x1,x2)

This code concatenates the elements of two cell array data values.

x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]}
y = cattimesteps(x1,x2)

See Also nndata | numtimesteps | gettimesteps | settimesteps |
catelements | catsignals | catsamples

1-18

cellmat

Purpose Create cell array of matrices

Syntax cellmat(A,B,C,D,v)

Description cellmat(A,B,C,D,v) takes four integer values and one scalar value v,
and returns an A-by-B cell array of C-by-D matrices of value v. If the
value v is not specified, zero is used.

Examples Here two cell arrays of matrices are created.

cm1 = cellmat(2,3,5,4)
cm2 = cellmat(3,4,2,2,pi)

See Also nndata

1-19

closeloop

Purpose Convert neural network open-loop feedback to closed loop

Syntax net = closeloop(net)

Description net = closeloop(net) takes a neural network and closes any
open-loop feedback. For each feedback output i whose property
net.outputs{i}.feedbackMode is 'open', it replaces its associated
feedback input and their input weights with layer weight connections
coming from the output. The net.outputs{i}.feedbackMode
property is set to 'closed', and the net.outputs{i}.feedbackInput
property is set to an empty matrix. Finally, the value of
net.outputs{i}.feedbackDelays is added to the delays of the feedback
layer weights (i.e., to the delays values of the replaced input weights).

Examples Here a NARX network is designed in open-loop form and then converted
to closed-loop form.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Yopen = net(Xs,Xi,Ai)
net = closeloop(net)
view(net)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
Ycloesed = net(Xs,Xi,Ai);

See Also noloop | openloop

1-20

combvec

Purpose Create all combinations of vectors

Syntax combvec(A1,A2...)

Description combvec(A1,A2...) takes any number of inputs,

A1 Matrix of N1 (column) vectors

A2 Matrix of N2 (column) vectors

and returns a matrix of (N1*N2*...) column vectors, where the
columns consist of all possibilities of A2 vectors, appended to A1 vectors,
etc.

Examples a1 = [1 2 3; 4 5 6];
a2 = [7 8; 9 10];
a3 = combvec(a1,a2)

1-21

compet

Purpose Competitive transfer function

Graph
and
Symbol

Syntax A = compet(N,FP)
info = compet('code')

Description compet is a neural transfer function. Transfer functions calculate a
layer’s output from its net input.

A = compet(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)

and returns the S-by-Qmatrix A with a 1 in each column where the same
column of N has its maximum value, and 0 elsewhere.

info = compet('code') returns information according to the code
string specified:

compet('name') returns the name of this function.

compet('output',FP) returns the [min max] output range.

compet('active',FP) returns the [min max] active input range.

compet('fullderiv') returns 1 or 0, depending on whether dA_dN is
S-by-S-by-Q or S-by-Q.

compet('fpnames') returns the names of the function parameters.

compet('fpdefaults') returns the default function parameters.

1-22

compet

Examples Here you define a net input vector N, calculate the output, and plot
both with bar graphs.

n = [0; 1; -0.5; 0.5];
a = compet(n);
subplot(2,1,1), bar(n), ylabel('n')
subplot(2,1,2), bar(a), ylabel('a')

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'compet';

See Also sim | softmax

1-23

competlayer

Purpose Competitive layer

Syntax competlayer(numClasses,kohonenLR,conscienceLR)

Description Competitive layers learn to classify input vectors into a given number of
classes, according to similarity between vectors, with a preference for
equal numbers of vectors per class.

competlayer(numClasses,kohonenLR,conscienceLR) takes these
arguments,

numClasses Number of classes to classify inputs (default
= 5)

kohonenLR Learning rate for Kohonen weights (default =
0.01)

conscienceLR Learning rate for conscience bias (default =
0.001)

and returns a competitive layer with numClasses neurons.

Examples Here a competitive layer is trained to classify 150 iris flowers into 6
classes.

inputs = iris_dataset;
net = competlayer(6);
net = train(net,inputs);
view(net)
outputs = net(inputs);
classes = vec2ind(outputs);

See Also selforgmap | patternnet | lvqnet

1-24

con2seq

Purpose Convert concurrent vectors to sequential vectors

Syntax S = con2seq(b)
S = con2seq(b,TS)

Description Neural Network Toolbox™ software arranges concurrent vectors with
a matrix, and sequential vectors with a cell array (where the second
index is the time step).

con2seq and seq2con allow concurrent vectors to be converted to
sequential vectors, and back again.

S = con2seq(b) takes one input,

b R-by-TS matrix

and returns one output,

S 1-by-TS cell array of R-by-1 vectors

S = con2seq(b,TS) can also convert multiple batches,

b N-by-1 cell array of matrices with M*TS columns

TS Time steps

and returns

S N-by-TS cell array of matrices with M columns

Examples Here a batch of three values is converted to a sequence.

p1 = [1 4 2]
p2 = con2seq(p1)

1-25

con2seq

Here, two batches of vectors are converted to two sequences with two
time steps.

p1 = {[1 3 4 5; 1 1 7 4]; [7 3 4 4; 6 9 4 1]}
p2 = con2seq(p1,2)

See Also seq2con | concur

1-26

concur

Purpose Create concurrent bias vectors

Syntax concur(B,Q)

Description concur(B,Q)

B S-by-1 bias vector (or an Nl-by-1 cell array of vectors)

Q Concurrent size

and returns an S-by-B matrix of copies of B (or an Nl-by-1 cell array
of matrices).

Examples Here concur creates three copies of a bias vector.

b = [1; 3; 2; -1];
concur(b,3)

Network
Use

To calculate a layer’s net input, the layer’s weighted inputs must be
combined with its biases. The following expression calculates the net
input for a layer with the netsum net input function, two input weights,
and a bias:

n = netsum(z1,z2,b)

The above expression works if Z1, Z2, and B are all S-by-1 vectors.
However, if the network is being simulated by sim (or adapt or train) in
response to Q concurrent vectors, then Z1 and Z2 will be S-by-Q matrices.
Before B can be combined with Z1 and Z2, you must make Q copies of it.

n = netsum(z1,z2,concur(b,q))

See Also con2seq | netprod | netsum | seq2con | sim

1-27

configure

Purpose Configure network inputs and outputs to best match input and target
data

Syntax net = configure(net,x,t)
net = configure(net,x)
net = configure(net,'inputs',x,i)
net = configure(net,'outputs',t,i)

Description Configuration is the process of setting network input and output sizes
and ranges, input preprocessing settings and output postprocessing
settings, and weight initialization settings to match input and target
data.

Configuration must happen before a network’s weights and biases can
be initialized. Unconfigured networks are automatically configured and
initialized the first time train is called. Alternately, a network can
be configured manually either by calling this function or by setting
a network’s input and output sizes, ranges, processing settings, and
initialization settings properties manually.

net = configure(net,x,t) takes input data x and target data t, and
configures the network’s inputs and outputs to match.

net = configure(net,x) configures only inputs.

net = configure(net,'inputs',x,i) configures the inputs specified
with the index vector i. If i is not specified all inputs are configured.

net = configure(net,'outputs',t,i) configures the outputs
specified with the index vector i. If i is not specified all targets are
configured.

Examples Here a feedforward network is created and manually configured for a
simple fitting problem (as opposed to allowing train to configure it).

[x,t] = simplefit_dataset;
net = feedforwardnet(20); view(net)
net = configure(net,x,t); view(net)

1-28

configure

See Also isconfigured | unconfigure | init | train

1-29

confusion

Purpose Classification confusion matrix

Syntax [c,cm,ind,per] = confusion(targets,outputs)

Description [c,cm,ind,per] = confusion(targets,outputs) takes these values:

targets S-by-Q matrix, where each column vector contains a
single 1 value, with all other elements 0. The index
of the 1 indicates which of S categories that vector
represents.

outputs S-by-Q matrix, where each column contains values in
the range [0,1]. The index of the largest element in
the column indicates which of S categories that vector
represents.

and returns these values:

c Confusion value = fraction of samples misclassified

cm S-by-S confusion matrix, where cm(i,j) is the number
of samples whose target is the ith class that was
classified as j

ind S-by-S cell array, where ind{i,j} contains the indices of
samples with the ith target class, but jth output class

per S-by-4 matrix, where each row summarizes four
percentages associated with the ith class:

per(i,1) false negative rate

= (false negatives)/(all output negatives)

per(i,2) false positive rate

= (false positives)/(all output positives)

per(i,3) true positive rate

= (true positives)/(all output positives)

per(i,4) true negative rate

= (true negatives)/(all output negatives)

1-30

confusion

[c,cm,ind,per] = confusion(TARGETS,OUTPUTS) takes these values:

targets 1-by-Q vector of 1/0 values representing membership

outputs S-by-Q matrix, of value in [0,1] interval, where values
greater than or equal to 0.5 indicate class membership

and returns these values:

c Confusion value = fraction of samples misclassified

cm 2-by-2 confusion matrix

ind 2-by-2 cell array, where ind{i,j} contains the indices
of samples whose target is 1 versus 0, and whose output
was greater than or equal to 0.5 versus less than 0.5

per 2-by-4 matrix where each ith row represents the
percentage of false negatives, false positives, true
positives, and true negatives for the class and
out-of-class

Examples load simpleclass_dataset
net = newpr(simpleclassInputs,simpleclassTargets,20);
net = train(net,simpleclassInputs,simpleclassTargets);
simpleclassOutputs = sim(net,simpleclassInputs);
[c,cm,ind,per] = ...
confusion(simpleclassTargets,simpleclassOutputs)

See Also plotconfusion | roc

1-31

convwf

Purpose Convolution weight function

Syntax Z = convwf(W,P)
dim = convwf('size',S,R,FP)
dw = convwf('dw',W,P,Z,FP)
info = convwf('code')

Description Weight functions apply weights to an input to get weighted inputs.

Z = convwf(W,P) returns the convolution of a weight matrix W and
an input P.

dim = convwf('size',S,R,FP) takes the layer dimension S, input
dimension R, and function parameters, and returns the weight size.

dw = convwf('dw',W,P,Z,FP) returns the derivative of Z with respect
to W.

info = convwf('code') returns information about this function. The
following codes are defined:

'deriv' Name of derivative function

'fullderiv' Reduced derivative = 2, full derivative = 1,
linear derivative = 0

'pfullderiv' Input: reduced derivative = 2, full derivative =
1, linear derivative = 0

'wfullderiv' Weight: reduced derivative = 2, full derivative
= 1, linear derivative = 0

'name' Full name

'fpnames' Returns names of function parameters

'fpdefaults' Returns default function parameters

Examples Here you define a random weight matrix W and input vector P and
calculate the corresponding weighted input Z.

1-32

convwf

W = rand(4,1);
P = rand(8,1);
Z = convwf(W,P)

Network
Use

To change a network so an input weight uses convwf, set
net.inputWeight{i,j}.weightFcn to 'convwf'. For a layer weight,
set net.layerWeight{i,j}.weightFcn to 'convwf'.

In either case, call sim to simulate the network with convwf.

1-33

defaultderiv

Purpose Default derivative function

Syntax defaultderiv('dperf_dwb',net,X,T,Xi,Ai,EW)
defaultderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description This function chooses the recommended derivative algorithm for the
type of network whose derivatives are being calculated. For static
networks, defaultderiv calls staticderiv; for dynamic networks it
calls bttderiv to calculate the gradient and fpderiv to calculate the
Jacobian.

defaultderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these
arguments,

net Neural network

X Inputs, an R-by-Q matrix (or N-by-TS cell array of
Ri-by-Q matrices)

T Targets, an S-by-Q matrix (or M-by-TS cell array of
Si-by-Q matrices)

Xi Initial input delay states (optional)

Ai Initial layer delay states (optional)

EW Error weights (optional)

and returns the gradient of performance with respect to the network’s
weights and biases, where R and S are the number of input and output
elements and Q is the number of samples (or N and M are the number of
input and output signals, Ri and Si are the number of each input and
outputs elements, and TS is the number of timesteps).

defaultderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of
errors with respect to the network’s weights and biases.

Examples Here a feedforward network is trained and both the gradient and
Jacobian are calculated.

1-34

defaultderiv

[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
dwb = defaultderiv('dperf_dwb',net,x,t)

See Also bttderiv | fpderiv | num2deriv | num5deriv | staticderiv

1-35

disp

Purpose Neural network properties

Syntax disp(net)

To Get
Help

Type help network/disp.

Description disp(net) displays a network’s properties.

Examples Here a perceptron is created and displayed.

net = newp([-1 1; 0 2],3);
disp(net)

See Also display | sim | init | train | adapt

1-36

display

Purpose Name and properties of neural network variables

Syntax display(net)

To Get
Help

Type help network/display.

Description display(net) displays a network variable’s name and properties.

Examples Here a perceptron variable is defined and displayed.

net = newp([-1 1; 0 2],3);
display(net)

display is automatically called as follows:

net

See Also disp | sim | init | train | adapt

1-37

dist

Purpose Euclidean distance weight function

Syntax Z = dist(W,P,FP)
dim = dist('size',S,R,FP)
dw = dist('dw',W,P,Z,FP)
D = dist(pos)
info = dist('code')

Description Weight functions apply weights to an input to get weighted inputs.

Z = dist(W,P,FP) takes these inputs,

W S-by-R weight matrix

P R-by-Q matrix of Q input (column) vectors

FP Struct of function parameters (optional,
ignored)

and returns the S-by-Q matrix of vector distances.

dim = dist('size',S,R,FP) takes the layer dimension S, input
dimension R, and function parameters, and returns the weight size
[S-by-R].

dw = dist('dw',W,P,Z,FP) returns the derivative of Z with respect
to W.

dist is also a layer distance function which can be used to find the
distances between neurons in a layer.

D = dist(pos) takes one argument,

pos N-by-S matrix of neuron positions

and returns the S-by-S matrix of distances.

info = dist('code') returns information about this function. The
following codes are supported:

1-38

dist

'deriv' Name of derivative function

'fullderiv' Full derivative = 1, linear derivative = 0

'pfullderiv' Input: reduced derivative = 2, full derivative =
1, linear derivative = 0

'name' Full name

'fpnames' Returns names of function parameters

'fpdefaults' Returns default function parameters

Examples Here you define a random weight matrix W and input vector P and
calculate the corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = dist(W,P)

Here you define a random matrix of positions for 10 neurons arranged
in three-dimensional space and find their distances.

pos = rand(3,10);
D = dist(pos)

Network
Use

You can create a standard network that uses dist by calling newpnn
or newgrnn.

To change a network so an input weight uses dist, set
net.inputWeight{i,j}.weightFcn to 'dist'. For a layer weight, set
net.layerWeight{i,j}.weightFcn to 'dist'.

To change a network so that a layer’s topology uses dist, set
net.layers{i}.distanceFcn to 'dist'.

In either case, call sim to simulate the network with dist.

See newpnn or newgrnn for simulation examples.

1-39

dist

Algorithms The Euclidean distance d between two vectors X and Y is

d = sum((x-y).^2).^0.5

See Also sim | dotprod | negdist | normprod | mandist | linkdist

1-40

distdelaynet

Purpose Distributed delay network

Syntax distdelaynet(delays,hiddenSizes,trainFcn)

Description Distributed delay networks are similar to feedforward networks, except
that each input and layer weights has a tap delay line associated with
it. This allows the network to have a finite dynamic response to time
series input data. This network is also similar to the time delay neural
network (timedelaynet), which only has delays on the input weight.

distdelaynet(delays,hiddenSizes,trainFcn) takes these
arguments,

delays Row vector of increasing 0 or positive delays
(default = 1:2)

hiddenSizes Row vector of one or more hidden layer sizes
(default = 10)

trainFcn Training function (default = 'trainlm')

and returns a distributed delay neural network.

Examples Here a distributed delay neural network is used to solve a simple time
series problem.

[X,T] = simpleseries_dataset;
net = distdelaynet({1:2,1:2},10)
[Xs,Xi,Ai,Ts] = preparets(net,X,T)
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Y,Ts)

See Also preparets | removedelay | timedelaynet | narnet | narxnet

1-41

divideblock

Purpose Divide targets into three sets using blocks of indices

Syntax [trainInd,valInd,testInd] = divideblock(Q,trainRatio,valRatio,
testRatio)

Description [trainInd,valInd,testInd] =
divideblock(Q,trainRatio,valRatio,testRatio) separates
targets into three sets: training, validation, and testing. It takes
the following inputs:

Q Number of targets to divide up.

trainRatio Ratio of targets for training. Default = 0.7.

valRatio Ratio of targets for validation. Default = 0.15.

testRatio Ratio of targets for testing. Default = 0.15.

and returns

trainInd Training indices

valInd Validation indices

testInd Test indices

Examples [trainInd,valInd,testInd] = divideblock(3000,0.6,0.2,0.2);

Network
Use

Here are the network properties that define which data division
function to use, what its parameters are, and what aspects of targets
are divided up, when train is called.

net.divideFcn
net.divideParam
net.divideMode

See Also divideind | divideint | dividerand | dividetrain

1-42

divideind

Purpose Divide targets into three sets using specified indices

Syntax [trainInd,valInd,testInd] = divideind(Q,trainInd,valInd,
testInd)

Description [trainInd,valInd,testInd] =
divideind(Q,trainInd,valInd,testInd) separates targets into three
sets: training, validation, and testing, according to indices provided. It
actually returns the same indices it receives as arguments; its purpose
is to allow the indices to be used for training, validation, and testing for
a network to be set manually.

It takes the following inputs,

Q Number of targets to divide up

trainInd Training indices

valInd Validation indices

testInd Test indices

and returns

trainInd Training indices (unchanged)

valInd Validation indices (unchanged)

testInd Test indices (unchanged)

Examples [trainInd,valInd,testInd] = ...
divideind(3000,1:2000,2001:2500,2501:3000);

Network
Use

Here are the network properties that define which data division
function to use, what its parameters are, and what aspects of targets
are divided up, when train is called.

1-43

divideind

net.divideFcn
net.divideParam
net.divideMode

See Also divideblock | divideint | dividerand | dividetrain

1-44

divideint

Purpose Divide targets into three sets using interleaved indices

Syntax [trainInd,valInd,testInd] = divideint(Q,trainRatio,valRatio,
testRatio)

Description [trainInd,valInd,testInd] =
divideint(Q,trainRatio,valRatio,testRatio) separates
targets into three sets: training, validation, and testing. It takes
the following inputs,

Q Number of targets to divide up.

trainRatio Ratio of vectors for training. Default = 0.7.

valRatio Ratio of vectors for validation. Default = 0.15.

testRatio Ratio of vectors for testing. Default = 0.15.

and returns

trainInd Training indices

valInd Validation indices

testInd Test indices

Examples [trainInd,valInd,testInd] = divideint(3000,0.6,0.2,0.2);

Network
Use

Here are the network properties that define which data division
function to use, what its parameters are, and what aspects of targets
are divided up, when train is called.

net.divideFcn
net.divideParam
net.divideMode

See Also divideblock | divideind | dividerand | dividetrain

1-45

dividerand

Purpose Divide targets into three sets using random indices

Syntax [trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,
testRatio)

Description [trainInd,valInd,testInd] =
dividerand(Q,trainRatio,valRatio,testRatio) separates
targets into three sets: training, validation, and testing. It takes
the following inputs,

Q Number of targets to divide up.

trainRatio Ratio of vectors for training. Default = 0.7.

valRatio Ratio of vectors for validation. Default = 0.15.

testRatio Ratio of vectors for testing. Default = 0.15.

and returns

trainInd Training indices

valInd Validation indices

testInd Test indices

Examples [trainInd,valInd,testInd] = dividerand(3000,0.6,0.2,0.2);

Network
Use

Here are the network properties that define which data division
function to use, what its parameters are, and what aspects of targets
are divided up, when train is called.

net.divideFcn
net.divideParam
net.divideMode

See Also divideblock | divideind | divideint | dividetrain

1-46

dividetrain

Purpose Assign all targets to training set

Syntax [trainInd,valInd,testInd] = dividetrain(Q,trainRatio,valRatio,
testRatio)

Description [trainInd,valInd,testInd] =
dividetrain(Q,trainRatio,valRatio,testRatio) assigns all targets
to the training set and no targets to either the validation or test sets. It
takes the following inputs,

Q Number of targets to divide up.

and returns

trainInd Training indices equal to 1:Q

valInd Empty validation indices, []

testInd Empty test indices, []

Examples [trainInd,valInd,testInd] = dividetrain(3000);

Network
Use

Here are the network properties that define which data division
function to use, what its parameters are, and what aspects of targets
are divided up, when train is called.

net.divideFcn
net.divideParam
net.divideMode

See Also divideblock | divideind | divideint | dividerand

1-47

dotprod

Purpose Dot product weight function

Syntax Z = dotprod(W,P,FP)
dim = dotprod('size',S,R,FP)
dw = dotprod('dw',W,P,Z,FP)
info = dotprod('code')

Description Weight functions apply weights to an input to get weighted inputs.

Z = dotprod(W,P,FP) takes these inputs,

W S-by-R weight matrix

P R-by-Q matrix of Q input (column) vectors

FP Struct of function parameters (optional,
ignored)

and returns the S-by-Q dot product of W and P.

dim = dotprod('size',S,R,FP) takes the layer dimension S, input
dimension R, and function parameters, and returns the weight size
[S-by-R].

dw = dotprod('dw',W,P,Z,FP) returns the derivative of Z with respect
to W.

info = dotprod('code') returns information about this function.
The following codes are defined:

'deriv' Name of derivative function

'pfullderiv' Input: reduced derivative = 2, full derivative =
1, linear derivative = 0

'wfullderiv' Weight: reduced derivative = 2, full derivative
= 1, linear derivative = 0

1-48

dotprod

'name' Full name

'fpnames' Returns names of function parameters

'fpdefaults' Returns default function parameters

Examples Here you define a random weight matrix W and input vector P and
calculate the corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = dotprod(W,P)

Network
Use

You can create a standard network that uses dotprod by calling
feedforwardnet.

To change a network so an input weight uses dotprod, set
net.inputWeight{i,j}.weightFcn to 'dotprod'. For a layer weight,
set net.layerWeight{i,j}.weightFcn to 'dotprod'.

In either case, call sim to simulate the network with dotprod.

See Also sim | dist | feedforwardnet | negdist | normprod

1-49

elliotsig

Purpose Elliot symmetric sigmoid transfer function

Syntax A = elliotsig(N)

Description Transfer functions convert a neural network layer’s net input into its
net output.

A = elliotsig(N) takes an S-by-Q matrix of S N-element net input
column vectors and returns an S-by-Q matrix A of output vectors, where
each element of N is squashed from the interval [-inf inf] to the
interval [-1 1] with an “S-shaped” function.

The advantage of this transfer function over other sigmoids is that it is
fast to calculate on simple computing hardware as it does not require
any exponential or trigonometric functions. Its disadvantage is that it
only flattens out for large inputs, so its effect is not as local as other
sigmoid functions. This might result in more training iterations, or
require more neurons to achieve the same accuracy.

Examples Calculate a layer output from a single net input vector:

n = [0; 1; -0.5; 0.5];
a = elliotsig(n);

Plot the transfer function:

n = -5:0.01:5;
plot(n, elliotsig(n))
set(gca,'dataaspectratio',[1 1 1],'xgrid','on','ygrid','on')

For a network you have already defined, change the transfer function
for layer i:

net.layers{i}.transferFcn = 'elliotsig';

See Also elliot2sig | logsig | tansig

1-50

elliot2sig

Purpose Elliot 2 symmetric sigmoid transfer function

Syntax A = elliot2sig(N)

Description Transfer functions convert a neural network layer’s net input into its
net output. This function is a variation on the original Elliot sigmoid
function. It has a steeper slope, closer to tansig, but is not as smooth at
the center.

A = elliot2sig(N) takes an S-by-Q matrix of S N-element net input
column vectors and returns an S-by-Q matrix A of output vectors, where
each element of N is squashed from the interval [-inf inf] to the
interval [-1 1] with an “S-shaped” function.

The advantage of this transfer function over other sigmoids is that it is
fast to calculate on simple computing hardware as it does not require
any exponential or trigonometric functions. Its disadvantage is that it
departs from the classic sigmoid shape around zero.

Examples Calculate a layer output from a single net input vector:

n = [0; 1; -0.5; 0.5];
a = elliot2sig(n);

Plot the transfer function:

n = -5:0.01:5;
plot(n, elliot2sig(n))
set(gca,'dataaspectratio',[1 1 1],'xgrid','on','ygrid','on')

For a network you have already defined, change the transfer function
for layer i:

net.layers{i}.transferFcn = 'elliot2sig';

See Also elliotsig | logsig | tansig

1-51

elmannet

Purpose Elman neural network

Syntax elmannet(layerdelays,hiddenSizes,trainFcn)

Description Elman networks are feedforward networks (feedforwardnet) with the
addition of layer recurrent connections with tap delays.

With the availability of full dynamic derivative calculations (fpderiv
and bttderiv), the Elman network is no longer recommended except for
historical and research purposes. For more accurate learning try time
delay (timedelaynet), layer recurrent (layrecnet), NARX (narxnet),
and NAR (narnet) neural networks.

Elman networks with one or more hidden layers can learn any dynamic
input-output relationship arbitrarily well, given enough neurons in the
hidden layers. However, Elman networks use simplified derivative
calculations (using staticderiv, which ignores delayed connections) at
the expense of less reliable learning.

elmannet(layerdelays,hiddenSizes,trainFcn) takes these
arguments,

layerdelays Row vector of increasing 0 or positive delays
(default = 1:2)

hiddenSizes Row vector of one or more hidden layer sizes
(default = 10)

trainFcn Training function (default = 'trainlm')

and returns an Elman neural network.

Examples Here an Elman neural network is used to solve a simple time series
problem.

[X,T] = simpleseries_dataset;
net = elmannet(1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);

1-52

elmannet

net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y)

See Also preparets | removedelay | timedelaynet | layrecnet | narnet
| narxnet

1-53

errsurf

Purpose Error surface of single-input neuron

Syntax errsurf(P,T,WV,BV,F)

Description errsurf(P,T,WV,BV,F) takes these arguments,

P 1-by-Q matrix of input vectors

T 1-by-Q matrix of target vectors

WV Row vector of values of W

BV Row vector of values of B

F Transfer function (string)

and returns a matrix of error values over WV and BV.

Examples p = [-6.0 -6.1 -4.1 -4.0 +4.0 +4.1 +6.0 +6.1];
t = [+0.0 +0.0 +.97 +.99 +.01 +.03 +1.0 +1.0];
wv = -1:.1:1; bv = -2.5:.25:2.5;
es = errsurf(p,t,wv,bv,'logsig');
plotes(wv,bv,es,[60 30])

See Also plotes

1-54

extendts

Purpose Extend time series data to given number of timesteps

Syntax extendts(x,ts,v)

Description extendts(x,ts,v) takes these values,

x Neural network time series data

ts Number of timesteps

v Value

and returns the time series data either extended or truncated to
match the specified number of timesteps. If the value v is specified,
then extended series are filled in with that value, otherwise they are
extended with random values.

Examples Here, a 20-timestep series is created and then extended to 25 timesteps
with the value zero.

x = nndata(5,4,20);
y = extendts(x,25,0)

See Also nndata | catsamples | preparets

1-55

feedforwardnet

Purpose Feedforward neural network

Syntax feedforwardnet(hiddenSizes,trainFcn)

Description Feedforward networks consist of a series of layers. The first layer
has a connection from the network input. Each subsequent layer has
a connection from the previous layer. The final layer produces the
network’s output.

Feedforward networks can be used for any kind of input to output
mapping. A feedforward network with one hidden layer and enough
neurons in the hidden layers, can fit any finite input-output mapping
problem.

Specialized versions of the feedforward network include fitting
(fitnet) and pattern recognition (patternnet) networks. A
variation on the feedforward network is the cascade forward network
(cascadeforwardnet) which has additional connections from the input
to every layer, and from each layer to all following layers.

feedforwardnet(hiddenSizes,trainFcn) takes these arguments,

hiddenSizes Row vector of one or more hidden layer sizes
(default = 10)

trainFcn Training function (default = 'trainlm')

and returns a feedforward neural network.

Examples Here a feedforward neural network is used to solve a simple problem.

[x,t] = simplefit_dataset;
net = feedforwardnet(10)
net = train(net,x,t);
view(net)
y = net(x);
perf = perform(net,y,t)

1-56

feedforwardnet

See Also fitnet | patternnet | cascadeforwardnet

1-57

fitnet

Purpose Function fitting neural network

Syntax fitnet(hiddenSizes,trainFcn)

Description Fitting networks are feedforward neural networks (feedforwardnet)
used to fit an input-output relationship.

fitnet(hiddenSizes,trainFcn) takes these arguments,

hiddenSizes Row vector of one or more hidden layer sizes
(default = 10)

trainFcn Training function (default = 'trainlm')

and returns a fitting neural network.

Examples Here a fitting neural network is used to solve a simple problem.

[x,t] = simplefit_dataset;
net = fitnet(10)
net = train(net,x,t);
view(net)
y = net(x);
perf = perform(net,y,t)

See Also feedforwardnet | nftool

1-58

fixunknowns

Purpose Process data by marking rows with unknown values

Syntax [y,ps] = fixunknowns(X)
[y,ps] = fixunknowns(X,FP)
Y = fixunknowns('apply',X,PS)
X = fixunknowns('reverse',Y,PS)
name = fixunknowns('name')
fp = fixunknowns('pdefaults')
pd = fixunknowns('pdesc')
fixunknowns('pcheck',fp)

Description fixunknowns processes matrixes by replacing each row containing
unknown values (represented by NaN) with two rows of information.

The first row contains the original row, with NaN values replaced by the
row’s mean. The second row contains 1 and 0 values, indicating which
values in the first row were known or unknown, respectively.

[y,ps] = fixunknowns(X) takes these inputs,

X Single N-by-Q matrix or a 1-by-TS row cell array of
N-by-Q matrices

and returns

Y Each M-by-Q matrix with M - N rows added
(optional)

PS Process settings that allow consistent processing
of values

[y,ps] = fixunknowns(X,FP) takes an empty struct FP of parameters.

Y = fixunknowns('apply',X,PS) returns Y, given X and settings PS.

X = fixunknowns('reverse',Y,PS) returns X, given Y and settings PS.

1-59

fixunknowns

name = fixunknowns('name') returns the name of this process
method.

fp = fixunknowns('pdefaults') returns the default process
parameter structure.

pd = fixunknowns('pdesc') returns the process parameter
descriptions.

fixunknowns('pcheck',fp) throws an error if any parameter is illegal.

Examples Here is how to format a matrix with a mixture of known and unknown
values in its second row:

x1 = [1 2 3 4; 4 NaN 6 5; NaN 2 3 NaN]
[y1,ps] = fixunknowns(x1)

Next, apply the same processing settings to new values:

x2 = [4 5 3 2; NaN 9 NaN 2; 4 9 5 2]
y2 = fixunknowns('apply',x2,ps)

Reverse the processing of y1 to get x1 again.

x1_again = fixunknowns('reverse',y1,ps)

Definitions If you have input data with unknown values, you can represent them
with NaN values. For example, here are five 2-element vectors with
unknown values in the first element of two of the vectors:

p1 = [1 NaN 3 2 NaN; 3 1 -1 2 4];

The network will not be able to process the NaN values properly. Use the
function fixunknowns to transform each row with NaN values (in this
case only the first row) into two rows that encode that same information
numerically.

[p2,ps] = fixunknowns(p1);

1-60

fixunknowns

Here is how the first row of values was recoded as two rows.

p2 =
1 2 3 2 2
1 0 1 1 0
3 1 -1 2 4

The first new row is the original first row, but with the mean value
for that row (in this case 2) replacing all NaN values. The elements of
the second new row are now either 1, indicating the original element
was a known value, or 0 indicating that it was unknown. The original
second row is now the new third row. In this way both known and
unknown values are encoded numerically in a way that lets the network
be trained and simulated.

Whenever supplying new data to the network, you should transform the
inputs in the same way, using the settings ps returned by fixunknowns
when it was used to transform the training input data.

p2new = fixunknowns('apply',p1new,ps);

The function fixunkowns is only recommended for input processing.
Unknown targets represented by NaN values can be handled directly by
the toolbox learning algorithms. For instance, performance functions
used by backpropagation algorithms recognize NaN values as unknown
or unimportant values.

See Also mapminmax | mapstd | processpca

1-61

formwb

Purpose Form bias and weights into single vector

Syntax formwb(net,b,IW,LW)

Description formwb(net,b,IW,LW) takes a neural network and bias b, input weight
IW, and layer weight LW values, and combines the values into a single
vector.

Examples Here a network is created, configured, and its weights and biases
formed into a vector.

[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = configure(net,x,t);
wb = formwb(net,net.b,net.IW,net.LW)

See Also getwb | setwb | separatewb

1-62

fpderiv

Purpose Forward propagation derivative function

Syntax fpderiv('dperf_dwb',net,X,T,Xi,Ai,EW)
fpderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description This function calculates derivatives using the chain rule from inputs to
outputs, and in the case of dynamic networks, forward through time.

fpderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network

X Inputs, an R-by-Q matrix (or N-by-TS cell array of
Ri-by-Q matrices)

T Targets, an S-by-Q matrix (or M-by-TS cell array of
Si-by-Q matrices)

Xi Initial input delay states (optional)

Ai Initial layer delay states (optional)

EW Error weights (optional)

and returns the gradient of performance with respect to the network’s
weights and biases, where R and S are the number of input and output
elements and Q is the number of samples (or N and M are the number of
input and output signals, Ri and Si are the number of each input and
outputs elements, and TS is the number of timesteps).

fpderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors
with respect to the network’s weights and biases.

Examples Here a feedforward network is trained and both the gradient and
Jacobian are calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);

1-63

fpderiv

y = net(x);
perf = perform(net,t,y);
gwb = fpderiv('dperf_dwb',net,x,t)
jwb = fpderiv('de_dwb',net,x,t)

See Also bttderiv | defaultderiv | num2deriv | num5deriv | staticderiv

1-64

fromnndata

Purpose Convert data from standard neural network cell array form

Syntax fromnndata(x,toMatrix,columnSample,cellTime)

Description fromnndata(x,toMatrix,columnSample,cellTime) takes these
arguments,

net Neural network

toMatrix True if result is to be in matrix form

columnSample True if samples are to be represented as columns,
false if rows

cellTime True if time series are to be represented as a cell
array, false if represented with a matrix

and returns the original data reformatted accordingly.

Examples Here time-series data is converted from a matrix representation to
standard cell array representation, and back. The original data consists
of a 5-by-6 matrix representing one time-series sample consisting of
a 5-element vector over 6 timesteps arranged in a matrix with the
samples as columns.

x = rands(5,6)
columnSamples = true; % samples are by columns.
cellTime = false; % time-steps represented by a matrix, not cell.
[y,wasMatrix] = tonndata(x,columnSamples,cellTime)
x2 = fromnndata(y,wasMatrix,columnSamples,cellTime)

Here data is defined in standard neural network data cell form.
Converting this data does not change it. The data consists of three time
series samples of 2-element signals over 3 timesteps.

x = {rands(2,3); rands(2,3); rands(2,3)}
columnSamples = true;
cellTime = true;
[y,wasMatrix] = tonndata(x)

1-65

fromnndata

x2 = fromnndata(y,wasMatrix,columnSamples)

See Also tonndata

1-66

gadd

Purpose Generalized addition

Syntax gadd(a,b)

Description This function generalizes matrix addition to the addition of cell arrays
of matrices combined in an element-wise fashion.

gadd(a,b) takes two matrices or cell arrays, and adds them in an
element-wise manner.

Examples Here matrix and cell array values are added.

gadd([1 2 3; 4 5 6],[10;20])
gadd({1 2; 3 4},{1 3; 5 2})
gadd({1 2 3 4},{10;20;30})

See Also gsubtract | gmultiply | gdivide | gnegate | gsqrt

1-67

gdivide

Purpose Generalized division

Syntax gdivide(a,b)

Description This function generalizes matrix element-wise division to the division of
cell arrays of matrices combined in an element-wise fashion.

gdivide(a,b) takes two matrices or cell arrays, and divides them in
an element-wise manner.

Examples Here matrix and cell array values are added.

gdivide([1 2 3; 4 5 6],[10;20])
gdivide({1 2; 3 4},{1 3; 5 2})
gdivide({1 2 3 4},{10;20;30})

See Also gadd | gsubtract | gmultiply | gnegate | gsqrt

1-68

gensim

Purpose Generate Simulink block for neural network simulation

Syntax gensim(net,st)

To Get
Help

Type help network/gensim.

Description gensim(net,st) creates a Simulink® system containing a block that
simulates neural network net.

gensim(net,st) takes these inputs:

net Neural network

st Sample time (default = 1)

and creates a Simulink system containing a block that simulates neural
network net with a sampling time of st.

If net has no input or layer delays (net.numInputDelays and
net.numLayerDelays are both 0), you can use –1 for st to get a network
that samples continuously.

Examples [x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = train(net,x,t)
gensim(net)

1-69

getelements

Purpose Get neural network data elements

Syntax getelements(x,ind)

Description getelements(x,ind) returns the elements of neural network data x
indicated by the indices ind. The neural network data may be in matrix
or cell array form.

If x is a matrix, the result is the ind rows of x.

If x is a cell array, the result is a cell array with as many columns
as x, whose elements (1,i) are matrices containing the ind rows of
[x{:,i}].

Examples This code gets elements 1 and 3 from matrix data:

x = [1 2 3; 4 7 4]
y = getelements(x,[1 3])

This code gets elements 1 and 3 from cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = getelements(x,[1 3])

See Also nndata | numelements | setelements | catelements | getsamples |
gettimesteps | getsignals

1-70

getsamples

Purpose Get neural network data samples

Syntax getsamples(x,ind)

Description getsamples(x,ind) returns the samples of neural network data x
indicated by the indices ind. The neural network data may be in matrix
or cell array form.

If x is a matrix, the result is the ind columns of x.

If x is a cell array, the result is a cell array the same size as x, whose
elements are the ind columns of the matrices in x.

Examples This code gets samples 1 and 3 from matrix data:

x = [1 2 3; 4 7 4]
y = getsamples(x,[1 3])

This code gets elements 1 and 3 from cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = getsamples(x,[1 3])

See Also nndata | numsamples | setsamples | catsamples | getelements |
gettimesteps | getsignals

1-71

getsignals

Purpose Get neural network data signals

Syntax getsignals(x,ind)

Description getsignals(x,ind) returns the signals of neural network data x
indicated by the indices ind. The neural network data may be in matrix
or cell array form.

If x is a matrix, ind may only be 1, which will return x, or [] which will
return an empty matrix.

If x is a cell array, the result is the ind rows of x.

Examples This code gets signal 2 from cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = getsignals(x,2)

See Also nndata | numsignals | setsignals | catsignals | getelements |
getsamples | gettimesteps

1-72

getsiminit

Purpose Get Simulink neural network block initial input and layer delays states

Syntax [xi,ai] = getsiminit(sysName,netName,net)

Description [xi,ai] = getsiminit(sysName,netName,net) takes these
arguments,

sysName The name of the Simulink system containing the
neural network block

netName The name of the Simulink neural network block

net The original neural network

and returns,

xi Initial input delay states

ai Initial layer delay states

Examples Here a NARX network is designed. The NARX network has a standard
input and an open-loop feedback output to an associated feedback input.

[x,t] = simplenarx_dataset;
net = narxnet(1:2,1:2,20);
view(net)
[xs,xi,ai,ts] = preparets(net,x,{},t);
net = train(net,xs,ts,xi,ai);
y = net(xs,xi,ai);

Now the network is converted to closed-loop, and the data is reformatted
to simulate the network’s closed-loop response.

net = closeloop(net);
view(net)
[xs,xi,ai,ts] = preparets(net,x,{},t);

1-73

getsiminit

y = net(xs,xi,ai);

Here the network is converted to a Simulink system with workspace
input and output ports. Its delay states are initialized, inputs X1
defined in the workspace, and it is ready to be simulated in Simulink.

[sysName,netName] = gensim(net,'InputMode','Workspace',...
'OutputMode','WorkSpace','SolverMode','Discrete');

setsiminit(sysName,netName,net,xi,ai,1);
x1 = nndata2sim(x,1,1);

Finally the initial input and layer delays are obtained from the Simulink
model. (They will be identical to the values set with setsiminit.)

[xi,ai] = getsiminit(sysName,netName,net);

See Also gensim | setsiminit | nndata2sim | sim2nndata

1-74

gettimesteps

Purpose Get neural network data timesteps

Syntax gettimesteps(x,ind)

Description gettimesteps(x,ind) returns the timesteps of neural network data
x indicated by the indices ind. The neural network data may be in
matrix or cell array form.

If x is a matrix, ind can only be 1, which will return x; or [], which will
return an empty matrix.

If x is a cell array the result is the ind columns of x.

Examples This code gets timestep 2 from cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = gettimesteps(x,2)

See Also nndata | numtimesteps | settimesteps | cattimesteps |
getelements | getsamples | getsignals

1-75

getwb

Purpose Get network weight and bias values as single vector

Syntax getwb(net)

Description getwb(net) returns a neural network’s weight and bias values as a
single vector.

Examples Here a feedforward network is trained to fit some data, then its bias
and weight values are formed into a vector.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
wb = getwb(net)

See Also setwb | formwb | separatewb

1-76

gmultiply

Purpose Generalized multiplication

Syntax gmultiply(a,b)

Description This function generalizes matrix multiplication to the multiplication of
cell arrays of matrices combined in an element-wise fashion.

gmultiply(a,b) takes two matrices or cell arrays, and multiplies them
in an element-wise manner.

Examples Here matrix and cell array values are added.

gmultiply([1 2 3; 4 5 6],[10;20])
gmultiply({1 2; 3 4},{1 3; 5 2})
gmultiply({1 2 3 4},{10;20;30})

See Also gadd | gsubtract | gdivide | gnegate | gsqrt

1-77

gnegate

Purpose Generalized negation

Syntax gnegate(x)

Description This function generalizes matrix negation to the negation of cell arrays
of matrices combined in an element-wise fashion.

gnegate(x) takes a matrix or cell array of matrices, and negates the
matrices.

Examples Here is an example of negating a cell array:

x = {[1 2; 3 4],[1 3; 5 2]};
y = gnegate(x);
y{1}, y{2}

See Also gadd | gsubtract | gdivide | gmultiply | gsqrt

1-78

gpu2nndata

Purpose Reformat neural data back from GPU

Syntax X = gpu2nndata(Y,Q)
X = gpu2nndata(Y)
X = gpu2nndata(Y,Q,N,TS)

Description Training and simulation of neural networks require that matrices be
transposed. But they do not require (although they are more efficient
with) padding of column length so that each column is memory aligned.
This function copies data back from the current GPU and reverses this
transform. It can be used on data formatted with nndata2gpu or on
the results of network simulation.

X = gpu2nndata(Y,Q) copies the QQ-by-N gpuArray Y into RAM, takes
the first Q rows and transposes the result to get an N-by-Q matrix
representing Q N-element vectors.

X = gpu2nndata(Y) calculates Q as the index of the last row in Y that
is not all NaN values (those rows were added to pad Y for efficient GPU
computation by nndata2gpu). Y is then transformed as before.

X = gpu2nndata(Y,Q,N,TS) takes a QQ-by-(N*TS) gpuArray where N is
a vector of signal sizes, Q is the number of samples (less than or equal to
the number of rows after alignment padding QQ), and TS is the number
of time steps.

The gpuArray Y is copied back into RAM, the first Q rows are taken, and
then it is partitioned and transposed into an M-by-TS cell array, where M
is the number of elements in N. Each Y{i,ts} is an N(i)-by-Q matrix.

Examples Copy a matrix to the GPU and back:

x = rand(5,6)
[y,q] = nndata2gpu(x)
x2 = gpu2nndata(y,q)

Copy from the GPU a neural network cell array data representing
four time series, each consisting of five time steps of 2-element and
3-element signals.

1-79

gpu2nndata

x = nndata([2;3],4,5)
[y,q,n,ts] = nndata2gpu(x)
x2 = gpu2nndata(y,q,n,ts)

See Also nndata2gpu

1-80

gridtop

Purpose Grid layer topology function

Syntax gridtop(dim1,dim2,...,dimN)

Description pos = gridtop calculates neuron positions for layers whose neurons
are arranged in an N-dimensional grid.

gridtop(dim1,dim2,...,dimN) takes N arguments,

dimi Length of layer in dimension i

and returns an N-by-S matrix of N coordinate vectors where S is the
product of dim1*dim2*...*dimN.

Examples This code uses gridtop to directly create a two-dimensional layer
with 40 neurons arranged in an 8-by-5 grid; then uses the function
as an input to selforgmap to create weight positions of neurons for a
self-organizing map and plots the neuron topology.

pos = gridtop(8,5);
net = selforgmap([8 5],'topologyFcn','gridtop');
plotsomtop(net)

See Also hextop | randtop | tritop

1-81

gsqrt

Purpose Generalized square root

Syntax gsqrt(x)

Description This function generalizes matrix element-wise square root to the square
root of cell arrays of matrices combined in an element-wise fashion.

gsqrt(x) takes a matrix or cell array of matrices, and takes the
element-wise square root of the matrices.

Examples Here is an example of taking the element-wise square root of a cell
array:

gsqrt({1 2; 3 4},{1 3; 5 2})

See Also gadd | gsubtract | gdivide | gmultiply | gnegate

1-82

gsubtract

Purpose Generalized subtraction

Syntax gsubtract(a,b)

Description This function generalizes matrix subtraction to the subtraction of cell
arrays of matrices combined in an element-wise fashion.

gsubtract(a,b) takes two matrices or cell arrays, and subtracts them
in an element-wise manner.

Examples Here matrix and cell array values are added.

gsubtract([1 2 3; 4 5 6],[10;20])
gsubtract({1 2; 3 4},{1 3; 5 2})
gsubtract({1 2 3 4},{10;20;30})

See Also gadd | gmultiply | gdivide | gnegate | gsqrt

1-83

hardlim

Purpose Hard-limit transfer function

Graph
and
Symbol

Syntax A = hardlim(N,FP)

Description hardlim is a neural transfer function. Transfer functions calculate a
layer’s output from its net input.

A = hardlim(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)

and returns A, the S-by-Q Boolean matrix with 1s where N ≥ 0.

info = hardlim('code') returns information according to the code
string specified:

hardlim('name') returns the name of this function.

hardlim('output',FP) returns the [min max] output range.

hardlim('active',FP) returns the [min max] active input range.

hardlim('fullderiv') returns 1 or 0, depending on whether dA_dN is
S-by-S-by-Q or S-by-Q.

hardlim('fpnames') returns the names of the function parameters.

hardlim('fpdefaults') returns the default function parameters.

1-84

hardlim

Examples Here is how to create a plot of the hardlim transfer function.

n = -5:0.1:5;
a = hardlim(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'hardlim';

Algorithms hardlim(n) = 1 if n ≥ 0

0 otherwise

See Also sim | hardlims

1-85

hardlims

Purpose Symmetric hard-limit transfer function

Graph
and
Symbol

Syntax A = hardlims(N,FP)

Description hardlims is a neural transfer function. Transfer functions calculate a
layer’s output from its net input.

A = hardlims(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)

and returns A, the S-by-Q +1/–1 matrix with +1s where N ≥ 0.

info = hardlims('code') returns information according to the code
string specified:

hardlims('name') returns the name of this function.

hardlims('output',FP) returns the [min max] output range.

hardlims('active',FP) returns the [min max] active input range.

hardlims('fullderiv') returns 1 or 0, depending on whether dA_dN is
S-by-S-by-Q or S-by-Q.

hardlims('fpnames') returns the names of the function parameters.

hardlims('fpdefaults') returns the default function parameters.

1-86

hardlims

Examples Here is how to create a plot of the hardlims transfer function.

n = -5:0.1:5;
a = hardlims(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'hardlims';

Algorithms hardlims(n) = 1 if n ≥ 0, –1 otherwise.

See Also sim | hardlim

1-87

hextop

Purpose Hexagonal layer topology function

Syntax hextop(dim1,dim2,...,dimN)

Description hextop calculates the neuron positions for layers whose neurons are
arranged in an N-dimensional hexagonal pattern.

hextop(dim1,dim2,...,dimN) takes N arguments,

dimi Length of layer in dimension i

and returns an N-by-S matrix of N coordinate vectors where S is the
product of dim1*dim2*...*dimN.

Examples This code creates and displays a two-dimensional layer with 40 neurons
arranged in an 8-by-5 hexagonal pattern.

pos = hextop(8,5);
net = selforgmap([8 5],'topologyFcn','hextop');
plotsomtop(net)

See Also gridtop | randtop | tritop

1-88

ind2vec

Purpose Convert indices to vectors

Syntax ind2vec(ind)

Description ind2vec and vec2ind allow indices to be represented either by
themselves, or as vectors containing a 1 in the row of the index they
represent.

ind2vec(ind) takes one argument,

ind Row vector of indices

and returns a sparse matrix of vectors, with one 1 in each column, as
indicated by ind.

Examples Here four indices are defined and converted to vector representation.

ind = [1 3 2 3]
vec = ind2vec(ind)

See Also vec2ind

1-89

init

Purpose Initialize neural network

Syntax net = init(net)

To Get
Help

Type help network/init.

Description net = init(net) returns neural network net with weight and bias
values updated according to the network initialization function,
indicated by net.initFcn, and the parameter values, indicated by
net.initParam.

Examples Here a perceptron is created, and then configured so that its input,
output, weight, and bias dimensions match the input and target data.

x = [0 1 0 1; 0 0 1 1];
t = [0 0 0 1];
net = perceptron;
net = configure(net,x,t);
net.iw{1,1}
net.b{1}

Training the perceptron alters its weight and bias values.

net = train(net,x,t);
net.iw{1,1}
net.b{1}

init reinitializes those weight and bias values.

net = init(net);
net.iw{1,1}
net.b{1}

The weights and biases are zeros again, which are the initial values
used by perceptron networks.

1-90

init

Algorithms init calls net.initFcn to initialize the weight and bias values
according to the parameter values net.initParam.

Typically, net.initFcn is set to 'initlay', which initializes each
layer’s weights and biases according to its net.layers{i}.initFcn.

Backpropagation networks have net.layers{i}.initFcn set to
'initnw', which calculates the weight and bias values for layer i using
the Nguyen-Widrow initialization method.

Other networks have net.layers{i}.initFcn set to 'initwb', which
initializes each weight and bias with its own initialization function. The
most common weight and bias initialization function is rands, which
generates random values between –1 and 1.

See Also sim | adapt | train | initlay | initnw | initwb | rands | revert

1-91

initcon

Purpose Conscience bias initialization function

Syntax initcon (S,PR)

Description initcon is a bias initialization function that initializes biases for
learning with the learncon learning function.

initcon (S,PR) takes two arguments,

S Number of rows (neurons)

PR R-by-2 matrix of R = [Pmin Pmax] (default = [1 1])

and returns an S-by-1 bias vector.

Note that for biases, R is always 1. initcon could also be used to
initialize weights, but it is not recommended for that purpose.

Examples Here initial bias values are calculated for a five-neuron layer.

b = initcon(5)

Network
Use

You can create a standard network that uses initcon to initialize
weights by calling competlayer.

To prepare the bias of layer i of a custom network to initialize with
initcon,

1 Set net.initFcn to 'initlay'. (net.initParam automatically
becomes initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set net.biases{i}.initFcn to 'initcon'.

To initialize the network, call init.

1-92

initcon

Algorithms learncon updates biases so that each bias value b(i) is a function of
the average output c(i) of the neuron i associated with the bias.

initcon gets initial bias values by assuming that each neuron has
responded to equal numbers of vectors in the past.

See Also competlayer | init | initlay | initwb | learncon

1-93

initlay

Purpose Layer-by-layer network initialization function

Syntax net = initlay(net)
info = initlay('code')

Description initlay is a network initialization function that initializes each layer i
according to its own initialization function net.layers{i}.initFcn.

net = initlay(net) takes

net Neural network

and returns the network with each layer updated.

info = initlay('code') returns useful information for each
supported code string:

'pnames' Names of initialization parameters

'pdefaults' Default initialization parameters

initlay does not have any initialization parameters.

Network
Use

You can create a standard network that uses initlay by calling
feedforwardnet, cascadeforwardnet, and many other network
functions.

To prepare a custom network to be initialized with initlay,

1 Set net.initFcn to 'initlay'. This sets net.initParam to the
empty matrix [], because initlay has no initialization parameters.

2 Set each net.layers{i}.initFcn to a layer initialization function.
(Examples of such functions are initwb and initnw.)

To initialize the network, call init.

1-94

initlay

Algorithms The weights and biases of each layer i are initialized according to
net.layers{i}.initFcn.

See Also cascadeforwardnet | feedforwardnet | init | initnw | initwb

1-95

initlvq

Purpose LVQ weight initialization function

Syntax initlvq('configure',x)
initlvq('configure',net,'IW',i,j,settings)
initlvq('configure',net,'LW',i,j,settings)
initlvq('configure',net,'b',i,)

Description initlvq('configure',x) takes input data x and returns initialization
settings for an LVQ weights associated with that input.

initlvq('configure',net,'IW',i,j,settings) takes a network,
and indices indicating an input weight to layer i from input j, and that
weights settings, and returns new weight values.

initlvq('configure',net,'LW',i,j,settings) takes a network,
and indices indicating a layer weight to layer i from layer j, and that
weights settings, and returns new weight values.

initlvq('configure',net,'b',i,) takes a network, and an index
indicating a bias for layer i, and returns new bias values.

See Also lvqnet | init

1-96

initnw

Purpose Nguyen-Widrow layer initialization function

Syntax net = initnw(net,i)

Description initnw is a layer initialization function that initializes a layer’s weights
and biases according to the Nguyen-Widrow initialization algorithm.
This algorithm chooses values in order to distribute the active region of
each neuron in the layer approximately evenly across the layer’s input
space. The values contain a degree of randomness, so they are not the
same each time this function is called.

initnw requires that the layer it initializes have a transfer function
with a finite active input range. This includes transfer functions such
as tansig and satlin, but not purelin, whose active input range is the
infinite interval [-inf, inf]. Transfer functions, such as tansig, will
return their active input range as follows:

activeInputRange = tansig('active')
activeInputRange =

-2 2

net = initnw(net,i) takes two arguments,

net Neural network

i Index of a layer

and returns the network with layer i’s weights and biases updated.

There is a random element to Nguyen-Widrow initialization. Unless the
default random generator is set to the same seed before each call to
initnw, it will generate different weight and bias values each time.

Network
Use

You can create a standard network that uses initnw by calling
feedforwardnet or cascadeforwardnet.

To prepare a custom network to be initialized with initnw,

1-97

initnw

1 Set net.initFcn to 'initlay'. This sets net.initParam to the
empty matrix [], because initlay has no initialization parameters.

2 Set net.layers{i}.initFcn to 'initnw'.

To initialize the network, call init.

Algorithms The Nguyen-Widrow method generates initial weight and bias values
for a layer so that the active regions of the layer’s neurons are
distributed approximately evenly over the input space.

Advantages over purely random weights and biases are

• Few neurons are wasted (because all the neurons are in the input
space).

• Training works faster (because each area of the input space has
neurons). The Nguyen-Widrow method can only be applied to layers

- With a bias

- With weights whose weightFcn is dotprod

- With netInputFcn set to netsum

- With transferFcn whose active region is finite

If these conditions are not met, then initnw uses rands to initialize the
layer’s weights and biases.

See Also cascadeforwardnet | feedforwardnet | init | initlay | initwb

1-98

initsompc

Purpose Initialize SOM weights with principal components

Syntax weights = initsom(inputs,dimensions,positions)
weights = initsom(inputs,dimensions,topologyFcn)

Description initsompc initializes the weights of an N-dimensional self-organizing
map so that the initial weights are distributed across the space
spanned by the most significant N principal components of the inputs.
Distributing the weight significantly speeds up SOM learning, as the
map starts out with a reasonable ordering of the input space.

weights = initsom(inputs,dimensions,positions) takes these
arguments:

inputs R-by-Q matrix of Q R-element input vectors

dimensions D-by-1 vector of positive integer SOM dimensions

positions D-by-Smatrix of S D-dimension neuron positions

and returns the following:

weights S-by-R matrix of weights

weights = initsom(inputs,dimensions,topologyFcn) is an
alternative specifying the name of a layer topology function instead
of positions. topologyFcn is called with dimensions to obtain
positions.

Examples inputs = rand(2,100)+[2;3]*ones(1,100);
dimensions = [3 4];
positions = gridtop(dimensions);
weights = initsompc(inputs,dimensions,positions);

See Also gridtop | hextop | randtop

1-99

initwb

Purpose By weight and bias layer initialization function

Syntax initwb(net,i)

Description initwb is a layer initialization function that initializes a layer’s weights
and biases according to their own initialization functions.

initwb(net,i) takes two arguments,

net Neural network

i Index of a layer

and returns the network with layer i’s weights and biases updated.

Network
Use

You can create a standard network that uses initwb by calling
perceptron or linearlayer.

To prepare a custom network to be initialized with initwb,

1 Set net.initFcn to 'initlay'. This sets net.initParam to the
empty matrix [], because initlay has no initialization parameters.

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to a weight initialization
function. Set each net.layerWeights{i,j}.initFcn to a weight
initialization function. Set each net.biases{i}.initFcn to a bias
initialization function. (Examples of such functions are rands and
midpoint.)

To initialize the network, call init.

Algorithms Each weight (bias) in layer i is set to new values calculated according to
its weight (bias) initialization function.

See Also init | initlay | initnw | linearlayer | perceptron

1-100

initzero

Purpose Zero weight and bias initialization function

Syntax W = initzero(S,PR)
b = initzero(S,[1 1])

Description W = initzero(S,PR) takes two arguments,

S Number of rows (neurons)

PR R-by-2 matrix of input value ranges = [Pmin Pmax]

and returns an S-by-R weight matrix of zeros.

b = initzero(S,[1 1]) returns an S-by-1 bias vector of zeros.

Examples Here initial weights and biases are calculated for a layer with two
inputs ranging over [0 1] and [-2 2] and four neurons.

W = initzero(5,[0 1; -2 2])
b = initzero(5,[1 1])

Network
Use

You can create a standard network that uses initzero to initialize its
weights by calling newp or newlin.

To prepare the weights and the bias of layer i of a custom network
to be initialized with midpoint,

1 Set net.initFcn to 'initlay'. (net.initParam automatically
becomes initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to 'initzero'.

4 Set each net.layerWeights{i,j}.initFcn to 'initzero'.

5 Set each net.biases{i}.initFcn to 'initzero'.

1-101

initzero

To initialize the network, call init.

See help newp and help newlin for initialization examples.

See Also initwb | initlay | init

1-102

isconfigured

Purpose Indicate if network inputs and outputs are configured

Syntax [flag,inputflags,outputflags] = isconfigured(net)

Description [flag,inputflags,outputflags] = isconfigured(net) takes a
neural network and returns three values,

flag True if all network inputs and outputs are
configured (have non-zero sizes)

inputflags Vector of true/false values for each
configured/unconfigured input

outputflags Vector of true/false values for each
configured/unconfigured output

Examples Here are the flags returned for a new network before and after being
configured:

net = feedforwardnet;
[flag,inputFlags,outputFlags] = isconfigured(net)
[x,t] = simplefit_dataset;
net = configure(net,x,t);
[flag,inputFlags,outputFlags] = isconfigured(net)

See Also configure | unconfigure

1-103

layrecnet

Purpose Layer recurrent neural network

Syntax layrecnet(layerDelays,hiddenSizes,trainFcn)

Description Layer recurrent neural networks are similar to feedforward networks,
except that each layer has a recurrent connection with a tap delay
associated with it. This allows the network to have an infinite dynamic
response to time series input data. This network is similar to the time
delay (timedelaynet) and distributed delay (distdelaynet) neural
networks, which have finite input responses.

layrecnet(layerDelays,hiddenSizes,trainFcn) takes these
arguments,

layerDelays Row vector of increasing 0 or positive delays
(default = 1:2)

hiddenSizes Row vector of one or more hidden layer sizes
(default = 10)

trainFcn Training function (default = 'trainlm')

and returns a layer recurrent neural network.

Examples Use a layer recurrent neural network to solve a simple time series
problem:

[X,T] = simpleseries_dataset;
net = layrecnet(1:2,10)
[Xs,Xi,Ai,Ts] = preparets(net,X,T)
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Y,Ts)

See Also preparets | removedelay | distdelaynet | timedelaynet | narnet
| narxnet

1-104

learncon

Purpose Conscience bias learning function

Syntax [dB,LS] = learncon(B,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learncon('code')

Description learncon is the conscience bias learning function used to increase the
net input to neurons that have the lowest average output until each
neuron responds approximately an equal percentage of the time.

[dB,LS] = learncon(B,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several
inputs,

B S-by-1 bias vector

P 1-by-Q ones vector

Z S-by-Q weighted input vectors

N S-by-Q net input vectors

A S-by-Q output vectors

T S-by-Q layer target vectors

E S-by-Q layer error vectors

gW S-by-R gradient with respect to performance

gA S-by-Q output gradient with respect to performance

D S-by-S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

and returns

dB S-by-1 weight (or bias) change matrix

LS New learning state

1-105

learncon

Learning occurs according to learncon’s learning parameter, shown
here with its default value.

LP.lr - 0.001 Learning rate

info = learncon('code') returns useful information for each
supported code string:

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA

Neural Network Toolbox 2.0 compatibility: The LP.lr described above
equals 1 minus the bias time constant used by trainc in the Neural
Network Toolbox 2.0 software.

Examples Here you define a random output A and bias vector W for a layer with
three neurons. You also define the learning rate LR.

a = rand(3,1);
b = rand(3,1);
lp.lr = 0.5;

Because learncon only needs these values to calculate a bias change
(see “Algorithm” below), use them to do so.

dW = learncon(b,[],[],[],a,[],[],[],[],[],lp,[])

Network
Use

To prepare the bias of layer i of a custom network to learn with
learncon,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically
becomes trainr’s default parameters.)

1-106

learncon

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically
becomes trains’s default parameters.)

3 Set net.inputWeights{i}.learnFcn to 'learncon'

4 Set each net.layerWeights{i,j}.learnFcn to 'learncon'.
.(Each weight learning parameter property is automatically set to
learncon’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.

2 Call train (or adapt).

Algorithms learncon calculates the bias change db for a given neuron by first
updating each neuron’s conscience, i.e., the running average of its
output:

c = (1-lr)*c + lr*a

The conscience is then used to compute a bias for the neuron that is
greatest for smaller conscience values.

b = exp(1-log(c)) - b

(learncon recovers C from the bias values each time it is called.)

See Also learnk | learnos | adapt | train

1-107

learngd

Purpose Gradient descent weight and bias learning function

Syntax [dW,LS] = learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learngd('code')

Description learngd is the gradient descent weight and bias learning function.

[dW,LS] = learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several
inputs:

W S-by-R weight matrix (or S-by-1 bias vector)

P R-by-Q input vectors (or ones(1,Q))

Z S-by-Q output gradient with respect to performance x
Q weighted input vectors

N S-by-Q net input vectors

A S-by-Q output vectors

T S-by-Q layer target vectors

E S-by-Q layer error vectors

gW S-by-R gradient with respect to performance

gA S-by-Q output gradient with respect to performance

D S-by-S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be []

and returns

dW S-by-R weight (or bias) change matrix

LS New learning state

1-108

learngd

Learning occurs according to learngd’s learning parameter, shown
here with its default value.

LP.lr - 0.01 Learning rate

info = learngd('code') returns useful information for each
supported code string:

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA

Examples Here you define a random gradient gW for a weight going to a layer
with three neurons from an input with two elements. Also define a
learning rate of 0.5.

gW = rand(3,2);
lp.lr = 0.5;

Because learngd only needs these values to calculate a weight change
(see “Algorithm” below), use them to do so.

dW = learngd([],[],[],[],[],[],[],gW,[],[],lp,[])

Network
Use

You can create a standard network that uses learngd with newff,
newcf, or newelm. To prepare the weights and the bias of layer i of a
custom network to adapt with learngd,

1 Set net.adaptFcn to 'trains'. net.adaptParam automatically
becomes trains’s default parameters.

2 Set each net.inputWeights{i,j}.learnFcn to 'learngd'. Set
each net.layerWeights{i,j}.learnFcn to 'learngd'. Set
net.biases{i}.learnFcn to 'learngd'. Each weight and bias

1-109

learngd

learning parameter property is automatically set to learngd’s default
parameters.

To allow the network to adapt,

1 Set net.adaptParam properties to desired values.

2 Call adapt with the network.

See help newff or help newcf for examples.

Algorithms learngd calculates the weight change dW for a given neuron from the
neuron’s input P and error E, and the weight (or bias) learning rate LR,
according to the gradient descent dw = lr*gW.

See Also adapt | learngdm | train

1-110

learngdm

Purpose Gradient descent with momentum weight and bias learning function

Syntax [dW,LS] = learngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learngdm('code')

Description learngdm is the gradient descent with momentum weight and bias
learning function.

[dW,LS] = learngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several
inputs,

W S-by-R weight matrix (or S-by-1 bias vector)

P R-by-Q input vectors (or ones(1,Q))

Z S-by-Q weighted input vectors

N S-by-Q net input vectors

A S-by-Q output vectors

T S-by-Q layer target vectors

E S-by-Q layer error vectors

gW S-by-R gradient with respect to performance

gA S-by-Q output gradient with respect to performance

D S-by-S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix

LS New learning state

1-111

learngdm

Learning occurs according to learngdm’s learning parameters, shown
here with their default values.

LP.lr - 0.01 Learning rate

LP.mc - 0.9 Momentum constant

info = learngdm('code') returns useful information for each code
string:

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA

Examples Here you define a random gradient G for a weight going to a layer with
three neurons from an input with two elements. Also define a learning
rate of 0.5 and momentum constant of 0.8:

gW = rand(3,2);
lp.lr = 0.5;
lp.mc = 0.8;

Because learngdm only needs these values to calculate a weight change
(see “Algorithm” below), use them to do so. Use the default initial
learning state.

ls = [];
[dW,ls] = learngdm([],[],[],[],[],[],[],gW,[],[],lp,ls)

learngdm returns the weight change and a new learning state.

1-112

learngdm

Network
Use

You can create a standard network that uses learngdm with newff,
newcf, or newelm.

To prepare the weights and the bias of layer i of a custom network to
adapt with learngdm,

1 Set net.adaptFcn to 'trains'. net.adaptParam automatically
becomes trains’s default parameters.

2 Set each net.inputWeights{i,j}.learnFcn to 'learngdm'. Set
each net.layerWeights{i,j}.learnFcn to 'learngdm'. Set
net.biases{i}.learnFcn to 'learngdm'. Each weight and bias
learning parameter property is automatically set to learngdm’s
default parameters.

To allow the network to adapt,

1 Set net.adaptParam properties to desired values.

2 Call adapt with the network.

See help newff or help newcf for examples.

Algorithms learngdm calculates the weight change dW for a given neuron from the
neuron’s input P and error E, the weight (or bias) W, learning rate LR, and
momentum constant MC, according to gradient descent with momentum:

dW = mc*dWprev + (1-mc)*lr*gW

The previous weight change dWprev is stored and read from the learning
state LS.

See Also adapt | learngd | train

1-113

learnh

Purpose Hebb weight learning rule

Syntax [dW,LS] = learnh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnh('code')

Description learnh is the Hebb weight learning function.

[dW,LS] = learnh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several
inputs,

W S-by-R weight matrix (or S-by-1 bias vector)

P R-by-Q input vectors (or ones(1,Q))

Z S-by-Q weighted input vectors

N S-by-Q net input vectors

A S-by-Q output vectors

T S-by-Q layer target vectors

E S-by-Q layer error vectors

gW S-by-R gradient with respect to performance

gA S-by-Q output gradient with respect to performance

D S-by-S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix

LS New learning state

Learning occurs according to learnh’s learning parameter, shown here
with its default value.

1-114

learnh

LP.lr - 0.01 Learning rate

info = learnh('code') returns useful information for each code
string:

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA

Examples Here you define a random input P and output A for a layer with a
two-element input and three neurons. Also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
lp.lr = 0.5;

Because learnh only needs these values to calculate a weight change
(see “Algorithm” below), use them to do so.

dW = learnh([],p,[],[],a,[],[],[],[],[],lp,[])

Network
Use

To prepare the weights and the bias of layer i of a custom network to
learn with learnh,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically
becomes trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically
becomes trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnh'.

1-115

learnh

4 Set each net.layerWeights{i,j}.learnFcn to 'learnh'. (Each
weight learning parameter property is automatically set to learnh’s
default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired
values.

2 Call train (adapt).

Algorithms learnh calculates the weight change dW for a given neuron from the
neuron’s input P, output A, and learning rate LR according to the Hebb
learning rule:

dw = lr*a*p'

References Hebb, D.O., The Organization of Behavior, New York, Wiley, 1949

See Also learnhd | adapt | train

1-116

learnhd

Purpose Hebb with decay weight learning rule

Syntax [dW,LS] = learnhd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnhd('code')

Description learnhd is the Hebb weight learning function.

[dW,LS] = learnhd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several
inputs,

W S-by-R weight matrix (or S-by-1 bias vector)

P R-by-Q input vectors (or ones(1,Q))

Z S-by-Q weighted input vectors

N S-by-Q net input vectors

A S-by-Q output vectors

T S-by-Q layer target vectors

E S-by-Q layer error vectors

gW S-by-R gradient with respect to performance

gA S-by-Q output gradient with respect to performance

D S-by-S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix

LS New learning state

Learning occurs according to learnhd’s learning parameters, shown
here with default values.

1-117

learnhd

LP.dr - 0.01 Decay rate

LP.lr - 0.1 Learning rate

info = learnhd('code') returns useful information for each code
string:

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA

Examples Here you define a random input P, output A, and weights W for a layer
with a two-element input and three neurons. Also define the decay
and learning rates.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.dr = 0.05;
lp.lr = 0.5;

Because learnhd only needs these values to calculate a weight change
(see “Algorithm” below), use them to do so.

dW = learnhd(w,p,[],[],a,[],[],[],[],[],lp,[])

Network
Use

To prepare the weights and the bias of layer i of a custom network to
learn with learnhd,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically
becomes trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically
becomes trains’s default parameters.)

1-118

learnhd

3 Set each net.inputWeights{i,j}.learnFcn to 'learnhd'.

4 Set each net.layerWeights{i,j}.learnFcn to 'learnhd'. (Each
weight learning parameter property is automatically set to learnhd’s
default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired
values.

2 Call train (adapt).

Algorithms learnhd calculates the weight change dW for a given neuron from the
neuron’s input P, output A, decay rate DR, and learning rate LR according
to the Hebb with decay learning rule:

dw = lr*a*p' - dr*w

See Also learnh | adapt | train

1-119

learnis

Purpose Instar weight learning function

Syntax [dW,LS] = learnis(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnis('code')

Description learnis is the instar weight learning function.

[dW,LS] = learnis(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several
inputs,

W S-by-R weight matrix (or S-by-1 bias vector)

P R-by-Q input vectors (or ones(1,Q))

Z S-by-Q weighted input vectors

N S-by-Q net input vectors

A S-by-Q output vectors

T S-by-Q layer target vectors

E S-by-Q layer error vectors

gW S-by-R gradient with respect to performance

gA S-by-Q output gradient with respect to performance

D S-by-S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix

LS New learning state

Learning occurs according to learnis’s learning parameter, shown
here with its default value.

1-120

learnis

LP.lr - 0.01 Learning rate

info = learnis('code') returns useful information for each code
string:

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA

Examples Here you define a random input P, output A, and weight matrix W for
a layer with a two-element input and three neurons. Also define the
learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Because learnis only needs these values to calculate a weight change
(see “Algorithm” below), use them to do so.

dW = learnis(w,p,[],[],a,[],[],[],[],[],lp,[])

Network
Use

To prepare the weights and the bias of layer i of a custom network
so that it can learn with learnis,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically
becomes trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically
becomes trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnis'.

1-121

learnis

4 Set each net.layerWeights{i,j}.learnFcn to 'learnis'. (Each
weight learning parameter property is automatically set to learnis’s
default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

Algorithms learnis calculates the weight change dW for a given neuron from the
neuron’s input P, output A, and learning rate LR according to the instar
learning rule:

dw = lr*a*(p'-w)

References Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland,
Reidel Press, 1982

See Also learnk | learnos | adapt | train

1-122

learnk

Purpose Kohonen weight learning function

Syntax [dW,LS] = learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnk('code')

Description learnk is the Kohonen weight learning function.

[dW,LS] = learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several
inputs,

W S-by-R weight matrix (or S-by-1 bias vector)

P R-by-Q input vectors (or ones(1,Q))

Z S-by-Q weighted input vectors

N S-by-Q net input vectors

A S-by-Q output vectors

T S-by-Q layer target vectors

E S-by-Q layer error vectors

gW S-by-R gradient with respect to performance

gA S-by-Q output gradient with respect to performance

D S-by-S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix

LS New learning state

Learning occurs according to learnk’s learning parameter, shown here
with its default value.

1-123

learnk

LP.lr - 0.01 Learning rate

info = learnk('code') returns useful information for each code
string:

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA

Examples Here you define a random input P, output A, and weight matrix W for
a layer with a two-element input and three neurons. Also define the
learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Because learnk only needs these values to calculate a weight change
(see “Algorithm” below), use them to do so.

dW = learnk(w,p,[],[],a,[],[],[],[],[],lp,[])

Network
Use

To prepare the weights of layer i of a custom network to learn with
learnk,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically
becomes trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically
becomes trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnk'.

1-124

learnk

4 Set each net.layerWeights{i,j}.learnFcn to 'learnk'. (Each
weight learning parameter property is automatically set to learnk’s
default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.

2 Call train (or adapt).

Algorithms learnk calculates the weight change dW for a given neuron from the
neuron’s input P, output A, and learning rate LR according to the
Kohonen learning rule:

dw = lr*(p'-w), if a ~= 0; = 0, otherwise

References Kohonen, T., Self-Organizing and Associative Memory, New York,
Springer-Verlag, 1984

See Also learnis | learnos | adapt | train

1-125

learnlv1

Purpose LVQ1 weight learning function

Syntax [dW,LS] = learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnlv1('code')

Description learnlv1 is the LVQ1 weight learning function.

[dW,LS] = learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several
inputs,

W S-by-R weight matrix (or S-by-1 bias vector)

P R-by-Q input vectors (or ones(1,Q))

Z S-by-Q weighted input vectors

N S-by-Q net input vectors

A S-by-Q output vectors

T S-by-Q layer target vectors

E S-by-Q layer error vectors

gW S-by-R gradient with respect to performance

gA S-by-Q output gradient with respect to performance

D S-by-S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix

LS New learning state

Learning occurs according to learnlv1’s learning parameter, shown
here with its default value.

1-126

learnlv1

LP.lr - 0.01 Learning rate

info = learnlv1('code') returns useful information for each code
string:

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA

Examples Here you define a random input P, output A, weight matrix W, and
output gradient gA for a layer with a two-element input and three
neurons. Also define the learning rate LR.

p = rand(2,1);
w = rand(3,2);
a = compet(negdist(w,p));
gA = [-1;1; 1];
lp.lr = 0.5;

Because learnlv1 only needs these values to calculate a weight change
(see “Algorithm” below), use them to do so.

dW = learnlv1(w,p,[],[],a,[],[],[],gA,[],lp,[])

Network
Use

You can create a standard network that uses learnlv1 with lvqnet.
To prepare the weights of layer i of a custom network to learn with
learnlv1,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically
becomes trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically
becomes trains’s default parameters.)

1-127

learnlv1

3 Set each net.inputWeights{i,j}.learnFcn to 'learnlv1'.

4 Set each net.layerWeights{i,j}.learnFcn to 'learnlv1'.
(Each weight learning parameter property is automatically set to
learnlv1’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.

2 Call train (or adapt).

Algorithms learnlv1 calculates the weight change dW for a given neuron from the
neuron’s input P, output A, output gradient gA, and learning rate LR,
according to the LVQ1 rule, given i, the index of the neuron whose
output a(i) is 1:

dw(i,:) = +lr*(p-w(i,:)) if gA(i) = 0;= -lr*(p-w(i,:)) if
gA(i) = -1

See Also learnlv2 | adapt | train

1-128

learnlv2

Purpose LVQ2.1 weight learning function

Syntax [dW,LS] = learnlv2(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnlv2('code')

Description learnlv2 is the LVQ2 weight learning function.

[dW,LS] = learnlv2(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several
inputs,

W S-by-R weight matrix (or S-by-1 bias vector)

P R-by-Q input vectors (or ones(1,Q))

Z S-by-Q weighted input vectors

N S-by-Q net input vectors

A S-by-Q output vectors

T S-by-Q layer target vectors

E S-by-Q layer error vectors

gW S-by-R weight gradient with respect to performance

gA S-by-Q output gradient with respect to performance

D S-by-S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix

LS New learning state

Learning occurs according to learnlv2’s learning parameter, shown
here with its default value.

1-129

learnlv2

LP.lr - 0.01 Learning rate

LP.window - 0.25 Window size (0 to 1, typically 0.2 to 0.3)

info = learnlv2('code') returns useful information for each code
string:

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA

Examples Here you define a sample input P, output A, weight matrix W, and output
gradient gA for a layer with a two-element input and three neurons.
Also define the learning rate LR.

p = rand(2,1);
w = rand(3,2);
n = negdist(w,p);
a = compet(n);
gA = [-1;1; 1];
lp.lr = 0.5;

Because learnlv2 only needs these values to calculate a weight change
(see “Algorithm” below), use them to do so.

dW = learnlv2(w,p,[],n,a,[],[],[],gA,[],lp,[])

Network
Use

You can create a standard network that uses learnlv2 with lvqnet.

To prepare the weights of layer i of a custom network to learn with
learnlv2,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically
becomes trainr’s default parameters.)

1-130

learnlv2

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically
becomes trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnlv2'.

4 Set each net.layerWeights{i,j}.learnFcn to 'learnlv2'.
(Each weight learning parameter property is automatically set to
learnlv2’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.

2 Call train (or adapt).

Algorithms learnlv2 implements Learning Vector Quantization 2.1, which works
as follows:

For each presentation, if the winning neuron i should not have won,
and the runnerup j should have, and the distance di between the
winning neuron and the input p is roughly equal to the distance dj from
the runnerup neuron to the input p according to the given window,

min(di/dj, dj/di) > (1-window)/(1+window)

then move the winning neuron i weights away from the input vector,
and move the runnerup neuron j weights toward the input according to

dw(i,:) = - lp.lr*(p'-w(i,:))
dw(j,:) = + lp.lr*(p'-w(j,:))

See Also learnlv1 | adapt | train

1-131

learnos

Purpose Outstar weight learning function

Syntax [dW,LS] = learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnos('code')

Description learnos is the outstar weight learning function.

[dW,LS] = learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several
inputs,

W S-by-R weight matrix (or S-by-1 bias vector)

P R-by-Q input vectors (or ones(1,Q))

Z S-by-Q weighted input vectors

N S-by-Q net input vectors

A S-by-Q output vectors

T S-by-Q layer target vectors

E S-by-Q layer error vectors

gW S-by-R weight gradient with respect to performance

gA S-by-Q output gradient with respect to performance

D S-by-S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix

LS New learning state

Learning occurs according to learnos’s learning parameter, shown
here with its default value.

1-132

learnos

LP.lr - 0.01 Learning rate

info = learnos('code') returns useful information for each code
string:

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA

Examples Here you define a random input P, output A, and weight matrix W for
a layer with a two-element input and three neurons. Also define the
learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Because learnos only needs these values to calculate a weight change
(see “Algorithm” below), use them to do so.

dW = learnos(w,p,[],[],a,[],[],[],[],[],lp,[])

Network
Use

To prepare the weights and the bias of layer i of a custom network to
learn with learnos,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically
becomes trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically
becomes trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnos'.

1-133

learnos

4 Set each net.layerWeights{i,j}.learnFcn to 'learnos'. (Each
weight learning parameter property is automatically set to learnos’s
default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired
values.

2 Call train (adapt).

Algorithms learnos calculates the weight change dW for a given neuron from the
neuron’s input P, output A, and learning rate LR according to the outstar
learning rule:

dw = lr*(a-w)*p'

References Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland,
Reidel Press, 1982

See Also learnis | learnk | adapt | train

1-134

learnp

Purpose Perceptron weight and bias learning function

Syntax [dW,LS] = learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnp('code')

Description learnp is the perceptron weight/bias learning function.

[dW,LS] = learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several
inputs,

W S-by-R weight matrix (or b, and S-by-1 bias vector)

P R-by-Q input vectors (or ones(1,Q))

Z S-by-Q weighted input vectors

N S-by-Q net input vectors

A S-by-Q output vectors

T S-by-Q layer target vectors

E S-by-Q layer error vectors

gW S-by-R weight gradient with respect to performance

gA S-by-Q output gradient with respect to performance

D S-by-S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix

LS New learning state

info = learnp('code') returns useful information for each code
string:

1-135

learnp

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA

Examples Here you define a random input P and error E for a layer with a
two-element input and three neurons.

p = rand(2,1);
e = rand(3,1);

Because learnp only needs these values to calculate a weight change
(see “Algorithm” below), use them to do so.

dW = learnp([],p,[],[],[],[],e,[],[],[],[],[])

Network
Use

You can create a standard network that uses learnp with newp.

To prepare the weights and the bias of layer i of a custom network to
learn with learnp,

1 Set net.trainFcn to 'trainb'. (net.trainParam automatically
becomes trainb’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically
becomes trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnp'.

4 Set each net.layerWeights{i,j}.learnFcn to 'learnp'.

5 Set net.biases{i}.learnFcn to 'learnp'. (Each weight and bias
learning parameter property automatically becomes the empty
matrix, because learnp has no learning parameters.)

To train the network (or enable it to adapt),

1-136

learnp

1 Set net.trainParam (or net.adaptParam) properties to desired
values.

2 Call train (adapt).

See help newp for adaption and training examples.

Algorithms learnp calculates the weight change dW for a given neuron from the
neuron’s input P and error E according to the perceptron learning rule:

dw = 0, if e = 0
= p', if e = 1
= -p', if e = -1

This can be summarized as

dw = e*p'

References Rosenblatt, F., Principles of Neurodynamics, Washington, D.C., Spartan
Press, 1961

See Also adapt | learnpn | train

1-137

learnpn

Purpose Normalized perceptron weight and bias learning function

Syntax [dW,LS] = learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnpn('code')

Description learnpn is a weight and bias learning function. It can result in
faster learning than learnp when input vectors have widely varying
magnitudes.

[dW,LS] = learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several
inputs,

W S-by-R weight matrix (or S-by-1 bias vector)

P R-by-Q input vectors (or ones(1,Q))

Z S-by-Q weighted input vectors

N S-by-Q net input vectors

A S-by-Q output vectors

T S-by-Q layer target vectors

E S-by-Q layer error vectors

gW S-by-R weight gradient with respect to performance

gA S-by-Q output gradient with respect to performance

D S-by-S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix

LS New learning state

1-138

learnpn

info = learnpn('code') returns useful information for each code
string:

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA

Examples Here you define a random input P and error E for a layer with a
two-element input and three neurons.

p = rand(2,1);
e = rand(3,1);

Because learnpn only needs these values to calculate a weight change
(see “Algorithm” below), use them to do so.

dW = learnpn([],p,[],[],[],[],e,[],[],[],[],[])

Network
Use

You can create a standard network that uses learnpn with newp.

To prepare the weights and the bias of layer i of a custom network to
learn with learnpn,

1 Set net.trainFcn to 'trainb'. (net.trainParam automatically
becomes trainb’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically
becomes trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnpn'.

4 Set each net.layerWeights{i,j}.learnFcn to 'learnpn'.

5 Set net.biases{i}.learnFcn to 'learnpn'. (Each weight and
bias learning parameter property automatically becomes the empty
matrix, because learnpn has no learning parameters.)

1-139

learnpn

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired
values.

2 Call train (adapt).

See help newp for adaption and training examples.

Algorithms learnpn calculates the weight change dW for a given neuron from the
neuron’s input P and error E according to the normalized perceptron
learning rule:

pn = p / sqrt(1 + p(1)^2 + p(2)^2) + ... + p(R)^2)
dw = 0, if e = 0

= pn', if e = 1
= -pn', if e = -1

The expression for dW can be summarized as

dw = e*pn'

Limitations Perceptrons do have one real limitation. The set of input vectors must
be linearly separable if a solution is to be found. That is, if the input
vectors with targets of 1 cannot be separated by a line or hyperplane
from the input vectors associated with values of 0, the perceptron will
never be able to classify them correctly.

See Also adapt | learnp | train

1-140

learnsom

Purpose Self-organizing map weight learning function

Syntax [dW,LS] = learnsom(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnsom('code')

Description learnsom is the self-organizing map weight learning function.

[dW,LS] = learnsom(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several
inputs,

W S-by-R weight matrix (or S-by-1 bias vector)

P R-by-Q input vectors (or ones(1,Q))

Z S-by-Q weighted input vectors

N S-by-Q net input vectors

A S-by-Q output vectors

T S-by-Q layer target vectors

E S-by-Q layer error vectors

gW S-by-R weight gradient with respect to performance

gA S-by-Q output gradient with respect to performance

D S-by-S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix

LS New learning state

Learning occurs according to learnsom’s learning parameters, shown
here with their default values.

1-141

learnsom

LP.order_lr 0.9 Ordering phase learning rate

LP.order_steps 1000 Ordering phase steps

LP.tune_lr 0.02 Tuning phase learning rate

LP.tune_nd 1 Tuning phase neighborhood
distance

info = learnsom('code') returns useful information for each code
string:

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA

Examples Here you define a random input P, output A, and weight matrix W for
a layer with a two-element input and six neurons. You also calculate
positions and distances for the neurons, which are arranged in a 2-by-3
hexagonal pattern. Then you define the four learning parameters.

p = rand(2,1);
a = rand(6,1);
w = rand(6,2);
pos = hextop(2,3);
d = linkdist(pos);
lp.order_lr = 0.9;
lp.order_steps = 1000;
lp.tune_lr = 0.02;
lp.tune_nd = 1;

Because learnsom only needs these values to calculate a weight change
(see “Algorithm” below), use them to do so.

ls = [];

1-142

learnsom

[dW,ls] = learnsom(w,p,[],[],a,[],[],[],[],d,lp,ls)

Network
Use

You can create a standard network that uses learnsom with newsom.

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically
becomes trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically
becomes trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnsom'.

4 Set each net.layerWeights{i,j}.learnFcn to 'learnsom'.

5 Set net.biases{i}.learnFcn to 'learnsom'. (Each weight learning
parameter property is automatically set to learnsom’s default
parameters.)

To train the network (or enable it to adapt):

1 Set net.trainParam (or net.adaptParam) properties to desired
values.

2 Call train (adapt).

Algorithms learnsom calculates the weight change dW for a given neuron from the
neuron’s input P, activation A2, and learning rate LR:

dw = lr*a2*(p'-w)

where the activation A2 is found from the layer output A, neuron
distances D, and the current neighborhood size ND:

a2(i,q) = 1, if a(i,q) = 1
= 0.5, if a(j,q) = 1 and D(i,j) <= nd
= 0, otherwise

1-143

learnsom

The learning rate LR and neighborhood size NS are altered through two
phases: an ordering phase and a tuning phase.

The ordering phases lasts as many steps as LP.order_steps. During
this phase LR is adjusted from LP.order_lr down to LP.tune_lr, and
ND is adjusted from the maximum neuron distance down to 1. It is
during this phase that neuron weights are expected to order themselves
in the input space consistent with the associated neuron positions.

During the tuning phase LR decreases slowly from LP.tune_lr, and
ND is always set to LP.tune_nd. During this phase the weights are
expected to spread out relatively evenly over the input space while
retaining their topological order, determined during the ordering phase.

See Also adapt | train

1-144

learnsomb

Purpose Batch self-organizing map weight learning function

Syntax [dW,LS] = learnsomb(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnsomb('code')

Description learnsomb is the batch self-organizing map weight learning function.

[dW,LS] = learnsomb(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several
inputs:

W S-by-R weight matrix (or S-by-1 bias vector)

P R-by-Q input vectors (or ones(1,Q))

Z S-by-Q weighted input vectors

N S-by-Q net input vectors

A S-by-Q output vectors

T S-by-Q layer target vectors

E S-by-Q layer error vectors

gW S-by-R gradient with respect to performance

gA S-by-Q output gradient with respect to performance

D S-by-S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

and returns the following:

dW S-by-R weight (or bias) change matrix

LS New learning state

Learning occurs according to learnsomb’s learning parameter, shown
here with its default value:

1-145

learnsomb

LP.init_neighborhood 3 Initial neighborhood size

LP.steps 100 Ordering phase steps

info = learnsomb('code') returns useful information for each code
string:

'pnames' Returns names of learning parameters.

'pdefaults' Returns default learning parameters.

'needg' Returns 1 if this function uses gW or gA.

Examples This example defines a random input P, output A, and weight matrix
W for a layer with a 2-element input and 6 neurons. This example also
calculates the positions and distances for the neurons, which appear in
a 2-by-3 hexagonal pattern.

p = rand(2,1);
a = rand(6,1);
w = rand(6,2);
pos = hextop(2,3);
d = linkdist(pos);
lp = learnsomb('pdefaults');

Because learnsom only needs these values to calculate a weight change
(see Algorithm).

ls = [];
[dW,ls] = learnsomb(w,p,[],[],a,[],[],[],[],d,lp,ls)

Network
Use

You can create a standard network that uses learnsomb with
selforgmap. To prepare the weights of layer i of a custom network
to learn with learnsomb:

1-146

learnsomb

1 Set NET.trainFcn to 'trainr'. (NET.trainParam automatically
becomes trainr’s default parameters.)

2 Set NET.adaptFcn to 'trains'. (NET.adaptParam automatically
becomes trains’s default parameters.)

3 Set each NET.inputWeights{i,j}.learnFcn to 'learnsomb'.

4 Set each NET.layerWeights{i,j}.learnFcn to 'learnsomb'.
(Each weight learning parameter property is automatically set to
learnsomb’s default parameters.)

To train the network (or enable it to adapt):

1 Set NET.trainParam (or NET.adaptParam) properties as desired.

2 Call train (or adapt).

Algorithms learnsomb calculates the weight changes so that each neuron’s new
weight vector is the weighted average of the input vectors that the
neuron and neurons in its neighborhood responded to with an output
of 1.

The ordering phase lasts as many steps as LP.steps.

During this phase, the neighborhood is gradually reduced from a
maximum size of LP.init_neighborhood down to 1, where it remains
from then on.

See Also adapt | selforgmap | train

1-147

learnwh

Purpose Widrow-Hoff weight/bias learning function

Syntax [dW,LS] = learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnwh('code')

Description learnwh is the Widrow-Hoff weight/bias learning function, and is also
known as the delta or least mean squared (LMS) rule.

[dW,LS] = learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several
inputs,

W S-by-R weight matrix (or b, and S-by-1 bias vector)

P R-by-Q input vectors (or ones(1,Q))

Z S-by-Q weighted input vectors

N S-by-Q net input vectors

A S-by-Q output vectors

T S-by-Q layer target vectors

E S-by-Q layer error vectors

gW S-by-R weight gradient with respect to performance

gA S-by-Q output gradient with respect to performance

D S-by-S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix

LS New learning state

1-148

learnwh

Learning occurs according to learnwh’s learning parameter, shown
here with its default value.

LP.lr
0.01

Learning rate

info = learnwh('code') returns useful information for each code
string:

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA

Examples Here you define a random input P and error E for a layer with a
two-element input and three neurons. You also define the learning
rate LR learning parameter.

p = rand(2,1);
e = rand(3,1);
lp.lr = 0.5;

Because learnwh only needs these values to calculate a weight change
(see “Algorithm” below), use them to do so.

dW = learnwh([],p,[],[],[],[],e,[],[],[],lp,[])

Network
Use

You can create a standard network that uses learnwh with
linearlayer.

To prepare the weights and the bias of layer i of a custom network to
learn with learnwh,

1 Set net.trainFcn to 'trainb'. net.trainParam automatically
becomes trainb’s default parameters.

1-149

learnwh

2 Set net.adaptFcn to 'trains'. net.adaptParam automatically
becomes trains’s default parameters.

3 Set each net.inputWeights{i,j}.learnFcn to 'learnwh'.

4 Set each net.layerWeights{i,j}.learnFcn to 'learnwh'.

5 Set net.biases{i}.learnFcn to 'learnwh'. Each weight and bias
learning parameter property is automatically set to learnwh’s default
parameters.

To train the network (or enable it to adapt),

1 Set net.trainParam (net.adaptParam) properties to desired
values.

2 Call train (adapt).

Algorithms learnwh calculates the weight change dW for a given neuron from the
neuron’s input P and error E, and the weight (or bias) learning rate LR,
according to the Widrow-Hoff learning rule:

dw = lr*e*pn'

References Widrow, B., and M.E. Hoff, “Adaptive switching circuits,” 1960 IRE
WESCON Convention Record, New York IRE, pp. 96–104, 1960

Widrow, B., and S.D. Sterns, Adaptive Signal Processing, New York,
Prentice-Hall, 1985

See Also adapt | linearlayer | train

1-150

linearlayer

Purpose Linear layer

Syntax linearlayer(inputDelays,widrowHoffLR)

Description Linear layers are single layers of linear neurons. They may be static,
with input delays of 0, or dynamic, with input delays greater than 0.
They can be trained on simple linear time series problems, but often
are used adaptively to continue learning while deployed so they can
adjust to changes in the relationship between inputs and outputs while
being used.

If a network is needed to solve a nonlinear time series relationship, then
better networks to try include timedelaynet, narxnet, and narnet.

linearlayer(inputDelays,widrowHoffLR) takes these arguments,

inputDelays Row vector of increasing 0 or positive delays
(default = 1:2)

widrowHoffLR Widrow-Hoff learning rate (default = 0.01)

and returns a linear layer.

If the learning rate is too small, learning will happen very slowly.
However, a greater danger is that it may be too large and learning
will become unstable resulting in large changes to weight vectors and
errors increasing instead of decreasing. If a data set is available which
characterizes the relationship the layer is to learn, the maximum stable
learning rate can be calculated with maxlinlr.

Examples Here a linear layer is trained on a simple time series problem.

x = {0 -1 1 1 0 -1 1 0 0 1};
t = {0 -1 0 2 1 -1 0 1 0 1}
net = linearlayer(1:2,0.01)
[Xs,Xi,Ai,Ts] = preparets(net,X,T)
net = train(net,Xs,Ts,Xi,Ai);
view(net)

1-151

linearlayer

Y = net(Xs,Xi);
perf = perform(net,Ts,Y)

See Also preparets | removedelay | timedelaynet | narnet | narxnet

1-152

linkdist

Purpose Link distance function

Syntax d = linkdist(pos)

Description linkdist is a layer distance function used to find the distances between
the layer’s neurons given their positions.

d = linkdist(pos) takes one argument,

pos N-by-S matrix of neuron positions

and returns the S-by-S matrix of distances.

Examples Here you define a random matrix of positions for 10 neurons arranged
in three-dimensional space and find their distances.

pos = rand(3,10);
D = linkdist(pos)

Network
Use

You can create a standard network that uses linkdist as a distance
function by calling selforgmap.

To change a network so that a layer’s topology uses linkdist, set
net.layers{i}.distanceFcn to 'linkdist'.

In either case, call sim to simulate the network with dist.

Algorithms The link distance D between two position vectors Pi and Pj from a set of
S vectors is

Dij = 0, if i == j
= 1, if (sum((Pi-Pj).^2)).^0.5 is <= 1
= 2, if k exists, Dik = Dkj = 1
= 3, if k1, k2 exist, Dik1 = Dk1k2 = Dk2j = 1
= N, if k1..kN exist, Dik1 = Dk1k2 = ...= DkNj = 1
= S, if none of the above conditions apply

1-153

linkdist

See Also dist | mandist | selforgmap | sim

1-154

logsig

Purpose Log-sigmoid transfer function

Graph
and
Symbol

Syntax A = logsig(N,FP)
dA_dN = logsig('dn',N,A,FP)
info = logsig('code')

Description logsig is a transfer function. Transfer functions calculate a layer’s
output from its net input.

A = logsig(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N’s elements squashed into [0, 1].

dA_dN = logsig('dn',N,A,FP) returns the S-by-Q derivative of A with
respect to N. If A or FP is not supplied or is set to [], FP reverts to the
default parameters, and A is calculated from N.

info = logsig('code') returns useful information for each code
string:

logsig('name') returns the name of this function.

logsig('output',FP) returns the [min max] output range.

logsig('active',FP) returns the [min max] active input range.

1-155

logsig

logsig('fullderiv') returns 1 or 0, depending on whether dA_dN is
S-by-S-by-Q or S-by-Q.

logsig('fpnames') returns the names of the function parameters.

logsig('fpdefaults') returns the default function parameters.

Examples Here is the code to create a plot of the logsig transfer function.

n = -5:0.1:5;
a = logsig(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'logsig';

Algorithms logsig(n) = 1 / (1 + exp(-n))

See Also sim | tansig

1-156

lvqnet

Purpose Learning vector quantization neural network

Syntax lvqnet(hiddenSize,lvqLR,lvqLF)

Description LVQ (learning vector quantization) neural networks consist of two
layers. The first layer maps input vectors into clusters that are found
by the network during training. The second layer maps merges groups
of first layer clusters into the classes defined by the target data.

The total number of first layer clusters is determined by the number
of hidden neurons. The larger the hidden layer the more clusters the
first layer can learn, and the more complex mapping of input to target
classes can be made. The relative number of first layer clusters assigned
to each target class are determined according to the distribution of
target classes at the time of network initialization. This occurs when
the network is automatically configured the first time train is called,
or manually configured with the function configure, or manually
initialized with the function init is called.

lvqnet(hiddenSize,lvqLR,lvqLF) takes these arguments,

hiddenSize Size of hidden layer (default = 10)

lvqLR LVQ learning rate (default = 0.01)

lvqLF LVQ learning function (default = 'learnlv1')

and returns an LVQ neural network.

The other option for the lvq learning function is learnlv2.

Examples Here, an LVQ network is trained to classify iris flowers.

[x,t] = iris_dataset;
net = lvqnet(10)
net = train(net,x,t);
view(net)
y = net(x);

1-157

lvqnet

perf = perform(net,y,t)
classes = vec2ind(y)

See Also preparets | removedelay | timedelaynet | narnet | narxnet

1-158

lvqoutputs

Purpose LVQ outputs processing function

Syntax [X,settings] = lvqoutputs(X)
X = lvqoutputs('apply',X,PS)
X = lvqoutputs('reverse',X,PS)
dx_dy = lvqoutputs('dx_dy',X,X,PS)

Description [X,settings] = lvqoutputs(X) returns its argument unchanged,
but stores the ratio of target classes in the settings for use by initlvq
to initialize weights.

X = lvqoutputs('apply',X,PS) returns X.

X = lvqoutputs('reverse',X,PS) returns X.

dx_dy = lvqoutputs('dx_dy',X,X,PS) returns the identity
derivative.

See Also lvqnet | initlvq

1-159

mae

Purpose Mean absolute error performance function

Syntax perf = mae(E,Y,X,FP)

Description mae is a network performance function. It measures network
performance as the mean of absolute errors.

perf = mae(E,Y,X,FP) takes E and optional function parameters,

E Matrix or cell array of error vectors

Y Matrix or cell array of output vectors (ignored)

X Vector of all weight and bias values (ignored)

FP Function parameters (ignored)

and returns the mean absolute error.

dPerf_dx = mae('dx',E,Y,X,perf,FP) returns the derivative of perf
with respect to X.

info = mae('code') returns useful information for each code string:

mae('name') returns the name of this function.

mae('pnames') returns the names of the training parameters.

mae('pdefaults') returns the default function parameters.

Examples Create and configure a perceptron to have one input and one neuron:

net = perceptron;
net = configure(net,0,0);

The network is given a batch of inputs P. The error is calculated by
subtracting the output A from target T. Then the mean absolute error is
calculated.

p = [-10 -5 0 5 10];
t = [0 0 1 1 1];

1-160

mae

y = net(p)
e = t-y
perf = mae(e)

Note that mae can be called with only one argument because the other
arguments are ignored. mae supports those arguments to conform to the
standard performance function argument list.

Network
Use

You can create a standard network that uses mae with perceptron.

To prepare a custom network to be trained with mae, set
net.performFcn to 'mae'. This automatically sets net.performParam
to the empty matrix [], because mae has no performance parameters.

In either case, calling train or adapt, results in mae being used to
calculate performance.

See Also mse | perceptron

1-161

mandist

Purpose Manhattan distance weight function

Syntax Z = mandist(W,P)
D = mandist(pos)

Description mandist is the Manhattan distance weight function. Weight functions
apply weights to an input to get weighted inputs.

Z = mandist(W,P) takes these inputs,

W S-by-R weight matrix

P R-by-Q matrix of Q input (column) vectors

and returns the S-by-Q matrix of vector distances.

mandist is also a layer distance function, which can be used to find the
distances between neurons in a layer.

D = mandist(pos) takes one argument,

pos S row matrix of neuron positions

and returns the S-by-S matrix of distances.

Examples Here you define a random weight matrix W and input vector P and
calculate the corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = mandist(W,P)

Here you define a random matrix of positions for 10 neurons arranged
in three-dimensional space and then find their distances.

pos = rand(3,10);
D = mandist(pos)

1-162

mandist

Network
Use

To change a network so an input weight uses mandist, set
net.inputWeight{i,j}.weightFcn to 'mandist'. For a layer weight,
set net.layerWeight{i,j}.weightFcn to 'mandist'.

To change a network so a layer’s topology uses mandist, set
net.layers{i}.distanceFcn to 'mandist'.

In either case, call sim to simulate the network with dist. See newpnn
or newgrnn for simulation examples.

Algorithms The Manhattan distance D between two vectors X and Y is

D = sum(abs(x-y))

See Also dist | linkdist | sim

1-163

mapminmax

Purpose Process matrices by mapping row minimum and maximum values to
[-1 1]

Syntax [Y,PS] = mapminmax(X,YMIN,YMAX)
[Y,PS] = mapminmax(X,FP)
Y = mapminmax('apply',X,PS)
X = mapminmax('reverse',Y,PS)
dx_dy = mapminmax('dx_dy',X,Y,PS)

Description mapminmax processes matrices by normalizing the minimum and
maximum values of each row to [YMIN, YMAX].

[Y,PS] = mapminmax(X,YMIN,YMAX) takes X and optional parameters

X N-by-Q matrix or a 1-by-TS row cell array of N-by-Q
matrices

YMIN Minimum value for each row of Y (default is –1)

YMAX Maximum value for each row of Y (default is +1)

and returns

Y Each M-by-Q matrix (where M == N) (optional)

PS Process settings that allow consistent processing of
values

[Y,PS] = mapminmax(X,FP) takes parameters as a struct: FP.ymin,
FP.ymax.

Y = mapminmax('apply',X,PS) returns Y, given X and settings PS.

X = mapminmax('reverse',Y,PS) returns X, given Y and settings PS.

dx_dy = mapminmax('dx_dy',X,Y,PS) returns the reverse derivative.

1-164

mapminmax

Examples Here is how to format a matrix so that the minimum and maximum
values of each row are mapped to default interval [-1,+1].

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,PS] = mapminmax(x1)

Next, apply the same processing settings to new values.

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = mapminmax('apply',x2,PS)

Reverse the processing of y1 to get x1 again.

x1_again = mapminmax('reverse',y1,PS)

Algorithms It is assumed that X has only finite real values, and that the elements
of each row are not all equal. (If xmax=xmin or if either xmax or xmin
are non-finite, then y=x and no change occurs.)

y = (ymax-ymin)*(x-xmin)/(xmax-xmin) + ymin;

Definitions Before training, it is often useful to scale the inputs and targets so that
they always fall within a specified range. The function mapminmax
scales inputs and targets so that they fall in the range [–1,1]. The
following code illustrates how to use this function.

[pn,ps] = mapminmax(p);
[tn,ts] = mapminmax(t);
net = train(net,pn,tn);

The original network inputs and targets are given in the matrices p
and t. The normalized inputs and targets pn and tn that are returned
will all fall in the interval [–1,1]. The structures ps and ts contain the
settings, in this case the minimum and maximum values of the original
inputs and targets. After the network has been trained, the ps settings
should be used to transform any future inputs that are applied to the
network. They effectively become a part of the network, just like the
network weights and biases.

1-165

mapminmax

If mapminmax is used to scale the targets, then the output of the network
will be trained to produce outputs in the range [–1,1]. To convert these
outputs back into the same units that were used for the original targets,
use the settings ts. The following code simulates the network that was
trained in the previous code, and then converts the network output
back into the original units.

an = sim(net,pn);
a = mapminmax('reverse',an,ts);

The network output an corresponds to the normalized targets tn. The
unnormalized network output a is in the same units as the original
targets t.

If mapminmax is used to preprocess the training set data, then
whenever the trained network is used with new inputs they should be
preprocessed with the minimum and maximums that were computed
for the training set stored in the settings ps. The following code applies
a new set of inputs to the network already trained.

pnewn = mapminmax('apply',pnew,ps);
anewn = sim(net,pnewn);
anew = mapminmax('reverse',anewn,ts);

For most networks, including feedforwardnet, these steps are done
automatically, so that you only need to use the sim command.

See Also fixunknowns | mapstd | processpca

1-166

mapstd

Purpose Process matrices by mapping each row’s means to 0 and deviations to 1

Syntax [Y,PS] = mapstd(X,ymean,ystd)
[Y,PS] = mapstd(X,FP)
Y = mapstd('apply',X,PS)
X = mapstd('reverse',Y,PS)
dx_dy = mapstd('dx_dy',X,Y,PS)

Description mapstd processes matrices by transforming the mean and standard
deviation of each row to ymean and ystd.

[Y,PS] = mapstd(X,ymean,ystd) takes X and optional parameters,

X N-by-Q matrix or a 1-by-TS row cell array of N-by-Q
matrices

ymean Mean value for each row of Y (default is 0)

ystd Standard deviation for each row of Y (default is 1)

and returns

Y Each M-by-Q matrix (where M == N) (optional)

PS Process settings that allow consistent processing of
values

[Y,PS] = mapstd(X,FP) takes parameters as a struct: FP.ymean,
FP.ystd.

Y = mapstd('apply',X,PS) returns Y, given X and settings PS.

X = mapstd('reverse',Y,PS) returns X, given Y and settings PS.

dx_dy = mapstd('dx_dy',X,Y,PS) returns the reverse derivative.

Examples Here you format a matrix so that the minimum and maximum values of
each row are mapped to default mean and STD of 0 and 1.

1-167

mapstd

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,PS] = mapstd(x1)

Next, apply the same processing settings to new values.

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = mapstd('apply',x2,PS)

Reverse the processing of y1 to get x1 again.

x1_again = mapstd('reverse',y1,PS)

Algorithms It is assumed that X has only finite real values, and that the elements of
each row are not all equal.

y = (x-xmean)*(ystd/xstd) + ymean;

Definitions Another approach for scaling network inputs and targets is to normalize
the mean and standard deviation of the training set. The function
mapstd normalizes the inputs and targets so that they will have zero
mean and unity standard deviation. The following code illustrates the
use of mapstd.

[pn,ps] = mapstd(p);
[tn,ts] = mapstd(t);

The original network inputs and targets are given in the matrices p and
t. The normalized inputs and targets pn and tn that are returned will
have zero means and unity standard deviation. The settings structures
ps and ts contain the means and standard deviations of the original
inputs and original targets. After the network has been trained, you
should use these settings to transform any future inputs that are
applied to the network. They effectively become a part of the network,
just like the network weights and biases.

If mapstd is used to scale the targets, then the output of the network
is trained to produce outputs with zero mean and unity standard
deviation. To convert these outputs back into the same units that were

1-168

mapstd

used for the original targets, use ts. The following code simulates the
network that was trained in the previous code, and then converts the
network output back into the original units.

an = sim(net,pn);
a = mapstd('reverse',an,ts);

The network output an corresponds to the normalized targets tn. The
unnormalized network output a is in the same units as the original
targets t.

If mapstd is used to preprocess the training set data, then whenever
the trained network is used with new inputs, you should preprocess
them with the means and standard deviations that were computed for
the training set using ps. The following commands apply a new set of
inputs to the network already trained:

pnewn = mapstd('apply',pnew,ps);
anewn = sim(net,pnewn);
anew = mapstd('reverse',anewn,ts);

For most networks, including feedforwardnet, these steps are done
automatically, so that you only need to use the sim command.

See Also fixunknowns | mapminmax | processpca

1-169

maxlinlr

Purpose Maximum learning rate for linear layer

Syntax lr = maxlinlr(P)
lr = maxlinlr(P,'bias')

Description maxlinlr is used to calculate learning rates for linearlayer.

lr = maxlinlr(P) takes one argument,

P R-by-Q matrix of input vectors

and returns the maximum learning rate for a linear layer without a bias
that is to be trained only on the vectors in P.

lr = maxlinlr(P,'bias') returns the maximum learning rate for
a linear layer with a bias.

Examples Here you define a batch of four two-element input vectors and find the
maximum learning rate for a linear layer with a bias.

P = [1 2 -4 7; 0.1 3 10 6];
lr = maxlinlr(P,'bias')

See Also learnwh | linearlayer

1-170

meanabs

Purpose Mean of absolute elements of matrix or matrices

Syntax [m,n] = meanabs(x)

Description [m,n] = meanabs(x) takes a matrix or cell array of matrices and
returns,

m Mean value of all absolute finite values

n Number of finite values

If x contains no finite values, the mean returned is 0.

Examples m = meanabs([1 2;3 4])
[m,n] = meanabs({[1 2; NaN 4], [4 5; 2 3]})

See Also meansqr | sumabs | sumsqr

1-171

meansqr

Purpose Mean of squared elements of matrix or matrices

Syntax [m,n] = meansqr(x)

Description [m,n] = meansqr(x) takes a matrix or cell array of matrices and
returns,

m Mean value of all squared finite values

n Number of finite values

If x contains no finite values, the mean returned is 0.

Examples m = meansqr([1 2;3 4])
[m,n] = meansqr({[1 2; NaN 4], [4 5; 2 3]})

See Also meanabs | sumabs | sumsqr

1-172

midpoint

Purpose Midpoint weight initialization function

Syntax W = midpoint(S,PR)

Description midpoint is a weight initialization function that sets weight (row)
vectors to the center of the input ranges.

W = midpoint(S,PR) takes two arguments,

S Number of rows (neurons)

PR R-by-Q matrix of input value ranges = [Pmin Pmax]

and returns an S-by-R matrix with rows set to (Pmin+Pmax)'/2.

Examples Here initial weight values are calculated for a five-neuron layer with
input elements ranging over [0 1] and [-2 2].

W = midpoint(5,[0 1; -2 2])

Network
Use

You can create a standard network that uses midpoint to initialize
weights by calling newc.

To prepare the weights and the bias of layer i of a custom network to
initialize with midpoint,

1 Set net.initFcn to 'initlay'. (net.initParam automatically
becomes initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to 'midpoint'. Set each
net.layerWeights{i,j}.initFcn to 'midpoint'.

To initialize the network, call init.

See Also initwb | initlay | init

1-173

minmax

Purpose Ranges of matrix rows

Syntax pr = minmax(P)

Description pr = minmax(P) takes one argument,

P R-by-Q matrix

and returns the R-by-2 matrix PR of minimum and maximum values
for each row of P.

Alternatively, P can be an M-by-N cell array of matrices. Each matrix
P{i,j} should have Ri rows and Q columns. In this case, minmax
returns an M-by-1 cell array where the mth matrix is an Ri-by-2 matrix
of the minimum and maximum values of elements for the matrix on
the ith row of P.

Examples P = [0 1 2; -1 -2 -0.5]
pr = minmax(P)
P = {[0 1; -1 -2] [2 3 -2; 8 0 2]; [1 -2] [9 7 3]};
pr = minmax(P)

1-174

mse

Purpose Mean squared normalized error performance function

Syntax perf = mse(net,t,y,ew)

Description mse is a network performance function. It measures the network’s
performance according to the mean of squared errors.

perf = mse(net,t,y,ew) takes these arguments:

net Neural network

t Matrix or cell array of targets

y Matrix or cell array of outputs

ew Error weights (optional)

and returns the mean squared error.

This function has two optional parameters, which are associated with
networks whose net.trainFcn is set to this function:

• 'regularization' can be set to any value between 0 and 1. The
greater the regularization value, the more squared weights and
biases are included in the performance calculation relative to errors.
The default is 0, corresponding to no regularization.

• 'normalization' can be set to 'none' (the default); 'standard',
which normalizes errors between -2 and 2, corresponding to
normalizing outputs and targets between -1 and 1; and 'percent',
which normalizes errors between -1 and 1. This feature is useful for
networks with multi-element outputs. It ensures that the relative
accuracy of output elements with differing target value ranges are
treated as equally important, instead of prioritizing the relative
accuracy of the output element with the largest target value range.

You can create a standard network that uses mse with feedforwardnet
or cascadeforwardnet. To prepare a custom network to be trained
with mse, set net.performFcn to 'mse'. This automatically sets

1-175

mse

net.performParam to a structure with the default optional parameter
values.

Examples Here a two-layer feedforward network is created and trained to
predict median house prices using the mse performance function and a
regularization value of 0.01, which is the default performance function
for feedforwardnet.

[x,t] = house_dataset;
net = feedforwardnet(10);
net.performFcn = 'mse'; % Redundant, MSE is default
net.performParam.regularization = 0.01;
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);

Alternately, you can call this function directly.

perf = mse(net,x,t,'regularization',0.01);

See Also mae

1-176

narnet

Purpose Nonlinear autoregressive neural network

Syntax narnet(feedbackDelays,hiddenSizes,trainFcn)

Description NAR (nonlinear autoregressive) neural networks can be trained to
predict a time series from that series past values.

narnet(feedbackDelays,hiddenSizes,trainFcn) takes these
arguments,

feedbackDelays Row vector of increasing 0 or positive delays
(default = 1:2)

hiddenSizes Row vector of one or more hidden layer sizes
(default = 10)

trainFcn Training function (default = 'trainlm')

and returns a NAR neural network.

Examples Here a NAR network is used to solve a simple time series problem.

T = simplenar_dataset;
net = narnet(1:2,10)
[Xs,Xi,Ai,Ts] = preparets(net,{},{},T)
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi);
perf = perform(net,Ts,Y)

See Also preparets | removedelay | timedelaynet | narnet | narxnet

1-177

narxnet

Purpose Nonlinear autoregressive neural network with external input

Syntax narxnet(inputDelays,feedbackDelays,hiddenSizes,trainFcn)

Description NARX (Nonlinear autoregressive with external input) networks can
learn to predict one time series given past values of the same time
series, the feedback input, and another time series, called the external
or exogenous time series.

narxnet(inputDelays,feedbackDelays,hiddenSizes,trainFcn)
takes these arguments,

inputDelays Row vector of increasing 0 or positive delays
(default = 1:2)

feedbackDelays Row vector of increasing 0 or positive delays
(default = 1:2)

hiddenSizes Row vector of one or more hidden layer sizes
(default = 10)

trainFcn Training function (default = 'trainlm')

and returns a NARX neural network.

Examples Here a NARX neural network is used to solve a simple time series
problem.

[X,T] = simpleseries_dataset;
net = narxnet(1:2,1:2,10)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T)
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y)

Here the NARX network is simulated in closed loop form.

1-178

narxnet

netc = closeloop(net);
view(netc)
[Xs,Xi,Ai,Ts] = preparets(netc,X,{},T);
y = netc(Xs,Xi,Ai)

Here the NARX network is used to predict the next output a timestep
ahead of when it will actually appear.

netp = removedelay(net);
view(netp)
[Xs,Xi,Ai,Ts] = preparets(netp,X,{},T);
y = netp(Xs,Xi,Ai)

See Also closeloop | narnet | openloop | preparets | removedelay |
timedelaynet

1-179

nctool

Purpose Neural network classification or clustering tool

Syntax nctool

Description nctool opens the neural network clustering GUI.

Algorithms nctool leads you through solving a clustering problem using a
self-organizing map. The map forms a compressed representation of
the inputs space, reflecting both the relative density of input vectors
in that space, and a two-dimensional compressed representation of the
input-space topology.

1-180

negdist

Purpose Negative distance weight function

Syntax Z = negdist(W,P)
dim = negdist('size',S,R,FP)
dw = negdist('dz_dw',W,P,Z,FP)

Description negdist is a weight function. Weight functions apply weights to an
input to get weighted inputs.

Z = negdist(W,P) takes these inputs,

W S-by-R weight matrix

P R-by-Q matrix of Q input (column) vectors

FP Row cell array of function parameters (optional,
ignored)

and returns the S-by-Q matrix of negative vector distances.

dim = negdist('size',S,R,FP) takes the layer dimension S, input
dimension R, and function parameters, and returns the weight size
[S-by-R].

dw = negdist('dz_dw',W,P,Z,FP) returns the derivative of Z with
respect to W.

Examples Here you define a random weight matrix W and input vector P and
calculate the corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = negdist(W,P)

1-181

negdist

Network
Use

You can create a standard network that uses negdist by calling
competlayer or selforgmap.

To change a network so an input weight uses negdist, set
net.inputWeight{i,j}.weightFcn to 'negdist'. For a layer weight,
set net.layerWeight{i,j}.weightFcn to 'negdist'.

In either case, call sim to simulate the network with negdist.

Algorithms negdist returns the negative Euclidean distance:

z = -sqrt(sum(w-p)^2)

See Also competlayer | dist | dotprod | selforgmap | sim

1-182

netinv

Purpose Inverse transfer function

Syntax A = netinv(N,FP)

Description netinv is a transfer function. Transfer functions calculate a layer’s
output from its net input.

A = netinv(N,FP) takes inputs

N S-by-Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)

and returns 1/N.

info = netinv('code') returns information about this function. The
following codes are supported:

netinv('name') returns the name of this function.

netinv('output',FP) returns the [min max] output range.

netinv('active',FP) returns the [min max] active input range.

netinv('fullderiv') returns 1 or 0, depending on whether dA_dN is
S-by-S-by-Q or S-by-Q.

netinv('fpnames') returns the names of the function parameters.

netinv('fpdefaults') returns the default function parameters.

Examples Here you define 10 five-element net input vectors N and calculate A.

n = rand(5,10);
a = netinv(n);

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'netinv';

1-183

netinv

See Also tansig | logsig

1-184

netprod

Purpose Product net input function

Syntax N = netprod({Z1,Z2,...,Zn})
info = netprod('code')

Description netprod is a net input function. Net input functions calculate a layer’s
net input by combining its weighted inputs and biases.

N = netprod({Z1,Z2,...,Zn}) takes

Zi S-by-Q matrices in a row cell array

and returns an element-wise product of Z1 to Zn.

info = netprod('code') returns information about this function.
The following codes are supported:

'deriv' Name of derivative function

'fullderiv' Full N-by-S-by-Q derivative = 1, element-wise
S-by-Q derivative = 0

'name' Full name

'fpnames' Returns names of function parameters

'fpdefaults' Returns default function parameters

Examples Here netprod combines two sets of weighted input vectors
(user-defined).

Z1 = [1 2 4;3 4 1];
Z2 = [-1 2 2; -5 -6 1];
Z = {Z1,Z2};
N = netprod({Z})

1-185

netprod

Here netprod combines the same weighted inputs with a bias vector.
Because Z1 and Z2 each contain three concurrent vectors, three
concurrent copies of B must be created with concur so that all sizes
match.

B = [0; -1];
Z = {Z1, Z2, concur(B,3)};
N = netprod(Z)

Network
Use

You can create a standard network that uses netprod by calling newpnn
or newgrnn.

To change a network so that a layer uses netprod, set
net.layers{i}.netInputFcn to 'netprod'.

In either case, call sim to simulate the network with netprod. See
newpnn or newgrnn for simulation examples.

See Also sim | netsum | concur

1-186

netsum

Purpose Sum net input function

Syntax N = netsum({Z1,Z2,...,Zn},FP)
info = netsum('code')

Description netsum is a net input function. Net input functions calculate a layer’s
net input by combining its weighted inputs and biases.

N = netsum({Z1,Z2,...,Zn},FP) takes Z1 to Zn and optional function
parameters,

Zi S-by-Q matrices in a row cell array

FP Row cell array of function parameters (ignored)

and returns the elementwise sum of Z1 to Zn.

info = netsum('code') returns information about this function. The
following codes are supported:

netsum('name') returns the name of this function.

netsum('type') returns the type of this function.

netsum('fpnames') returns the names of the function parameters.

netsum('fpdefaults') returns default function parameter values.

netsum('fpcheck', FP) throws an error for illegal function
parameters.

netsum('fullderiv') returns 0 or 1, depending on whether the
derivative is S-by-Q or N-by-S-by-Q.

Examples Here netsum combines two sets of weighted input vectors and a bias.
You must use concur to make B the same dimensions as Z1 and Z2.

z1 = [1 2 4; 3 4 1}
z2 = [-1 2 2; -5 -6 1]
b = [0; -1]

1-187

netsum

n = netsum({z1,z2,concur(b,3)})

Assign this net input function to layer i of a network.

net.layers(i).netFcn = 'compet';

Use feedforwardnet or cascadeforwardnet to create a standard
network that uses netsum.

See Also cascadeforwardnet | feedforwardnet | netprod | netinv

1-188

network

Purpose Create custom neural network

Syntax net = network
net = network(numInputs,numLayers,biasConnect,inputConnect,

layerConnect,outputConnect)

To Get
Help

Type help network/network.

Description network creates new custom networks. It is used to create networks
that are then customized by functions such as feedforwardnet and
narxnet.

net = network without arguments returns a new neural network with
no inputs, layers or outputs.

net =
network(numInputs,numLayers,biasConnect,inputConnect,layerConnect,outp
takes these optional arguments (shown with default values):

numInputs Number of inputs, 0

numLayers Number of layers, 0

biasConnect numLayers-by-1 Boolean vector, zeros

inputConnect numLayers-by-numInputs Boolean matrix,
zeros

layerConnect numLayers-by-numLayers Boolean matrix,
zeros

outputConnect 1-by-numLayers Boolean vector, zeros

and returns

net New network with the given property values

1-189

network

Properties Architecture Properties

net.numInputs 0 or a positive
integer

Number of inputs.

net.numLayers 0 or a positive
integer

Number of layers.

net.biasConnect numLayer-by-1
Boolean vector

If net.biasConnect(i) is 1,
then layer i has a bias, and
net.biases{i} is a structure
describing that bias.

net.inputConnect numLayer-by-numInputs
Boolean vector

If net.inputConnect(i,j) is
1, then layer i has a weight
coming from input j, and
net.inputWeights{i,j} is
a structure describing that
weight.

net.layerConnect numLayer-by-numLayers
Boolean vector

If net.layerConnect(i,j) is
1, then layer i has a weight
coming from layer j, and
net.layerWeights{i,j} is
a structure describing that
weight.

net.numInputs 0 or a positive
integer

Number of inputs.

net.numLayers 0 or a positive
integer

Number of layers.

net.biasConnect numLayer-by-1
Boolean vector

If net.biasConnect(i) is 1,
then layer i has a bias, and
net.biases{i} is a structure
describing that bias.

1-190

network

net.inputConnect numLayer-by-numInputs
Boolean vector

If net.inputConnect(i,j) is
1, then layer i has a weight
coming from input j, and
net.inputWeights{i,j} is
a structure describing that
weight.

net.layerConnect numLayer-by-numLayers
Boolean vector

If net.layerConnect(i,j) is
1, then layer i has a weight
coming from layer j, and
net.layerWeights{i,j} is
a structure describing that
weight.

net.outputConnect1-by-numLayers
Boolean vector

If net.outputConnect(i)
is 1, then the network has
an output from layer i, and
net.outputs{i} is a structure
describing that output.

net.numOutputs 0 or a positive
integer (read
only)

Number of network
outputs according to
net.outputConnect.

net.numInputDelays0 or a positive
integer (read
only)

Maximum input
delay according to all
net.inputWeight{i,j}.delays.

net.numLayerDelays0 or a positive
number (read
only)

Maximum layer
delay according to all
net.layerWeight{i,j}.delays.

Subobject Structure Properties

net.inputs numInputs-by-1
cell array

net.inputs{i} is a structure
defining input i.

net.layers numLayers-by-1
cell array

net.layers{i} is a structure
defining layer i.

1-191

network

net.biases numLayers-by-1
cell array

If net.biasConnect(i) is
1, then net.biases{i} is a
structure defining the bias for
layer i.

net.inputWeights numLayers-by-numInputs
cell array

If net.inputConnect(i,j) is 1,
then net.inputWeights{i,j} is
a structure defining the weight
to layer i from input j.

net.layerWeights numLayers-by-numLayers
cell array

If net.layerConnect(i,j) is 1,
then net.layerWeights{i,j} is
a structure defining the weight
to layer i from layer j.

net.outputs 1-by-numLayers
cell array

If net.outputConnect(i) is
1, then net.outputs{i} is a
structure defining the network
output from layer i.

Function Properties

net.adaptFcn Name of a network adaption
function or ''

net.initFcn Name of a network initialization
function or ''

net.performFcn Name of a network performance
function or ''

net.trainFcn Name of a network training
function or ''

Parameter Properties

net.adaptParam Network adaption parameters

net.initParam Network initialization
parameters

1-192

network

net.performParam Network performance parameters

net.trainParam Network training parameters

Weight and Bias Value Properties

net.IW numLayers-by-numInputs cell
array of input weight values

net.LW numLayers-by-numLayers cell
array of layer weight values

net.b numLayers-by-1 cell array of bias
values

Other Properties

net.userdata Structure you can use to store
useful values

Examples Here is the code to create a network without any inputs and layers, and
then set its numbers of inputs and layers to 1 and 2 respectively.

net = network
net.numInputs = 1
net.numLayers = 2

Here is the code to create the same network with one line of code.

net = network(1,2)

Here is the code to create a one-input, two-layer, feed-forward network.
Only the first layer has a bias. An input weight connects to layer 1 from
input 1. A layer weight connects to layer 2 from layer 1. Layer 2 is a
network output and has a target.

net = network(1,2,[1;0],[1; 0],[0 0; 1 0],[0 1])

1-193

network

You can see the properties of subobjects as follows:

net.inputs{1}
net.layers{1}, net.layers{2}
net.biases{1}
net.inputWeights{1,1}, net.layerWeights{2,1}
net.outputs{2}

You can get the weight matrices and bias vector as follows:

net.iw.{1,1}, net.iw{2,1}, net.b{1}

You can alter the properties of any of these subobjects. Here you change
the transfer functions of both layers:

net.layers{1}.transferFcn = 'tansig';
net.layers{2}.transferFcn = 'logsig';

Here you change the number of elements in input 1 to 2 by setting each
element’s range:

net.inputs{1}.range = [0 1; -1 1];

Next you can simulate the network for a two-element input vector:

p = [0.5; -0.1];
y = sim(net,p)

See Also sim

1-194

newgrnn

Purpose Design generalized regression neural network

Syntax net = newgrnn(P,T,spread)

Description Generalized regression neural networks (grnns) are a kind of radial
basis network that is often used for function approximation. grnns can
be designed very quickly.

net = newgrnn(P,T,spread) takes three inputs,

P R-by-Q matrix of Q input vectors

T S-by-Q matrix of Q target class vectors

spread Spread of radial basis functions (default = 1.0)

and returns a new generalized regression neural network.

The larger the spread, the smoother the function approximation. To
fit data very closely, use a spread smaller than the typical distance
between input vectors. To fit the data more smoothly, use a larger
spread.

Properties newgrnn creates a two-layer network. The first layer has radbas
neurons, and calculates weighted inputs with dist and net input with
netprod. The second layer has purelin neurons, calculates weighted
input with normprod, and net inputs with netsum. Only the first layer
has biases.

newgrnn sets the first layer weights to P', and the first layer biases
are all set to 0.8326/spread, resulting in radial basis functions that
cross 0.5 at weighted inputs of +/– spread. The second layer weights
W2 are set to T.

Examples Here you design a radial basis network, given inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];

1-195

newgrnn

net = newgrnn(P,T);

The network is simulated for a new input.

P = 1.5;
Y = sim(net,P)

References Wasserman, P.D., Advanced Methods in Neural Computing, New York,
Van Nostrand Reinhold, 1993, pp. 155–61

See Also sim | newrb | newrbe | newpnn

1-196

newlind

Purpose Design linear layer

Syntax net = newlind(P,T,Pi)

Description net = newlind(P,T,Pi) takes these input arguments,

P R-by-Q matrix of Q input vectors

T S-by-Q matrix of Q target class vectors

Pi 1-by-ID cell array of initial input delay states

where each element Pi{i,k} is an Ri-by-Q matrix, and the default =
[]; and returns a linear layer designed to output T (with minimum
sum square error) given input P.

newlind(P,T,Pi) can also solve for linear networks with input delays
and multiple inputs and layers by supplying input and target data in
cell array form:

P Ni-by-TS cell
array

Each element P{i,ts} is an
Ri-by-Q input matrix

T Nt-by-TS cell
array

Each element P{i,ts} is a Vi-by-Q
matrix

Pi Ni-by-ID cell
array

Each element Pi{i,k} is an
Ri-by-Q matrix, default = []

and returns a linear network with ID input delays, Ni network inputs,
and Nl layers, designed to output T (with minimum sum square error)
given input P.

Examples You want a linear layer that outputs T given P for the following
definitions:

P = [1 2 3];
T = [2.0 4.1 5.9];

1-197

newlind

Use newlind to design such a network and check its response.

net = newlind(P,T);
Y = sim(net,P)

You want another linear layer that outputs the sequence T given the
sequence P and two initial input delay states Pi.

P = {1 2 1 3 3 2};
Pi = {1 3};
T = {5.0 6.1 4.0 6.0 6.9 8.0};
net = newlind(P,T,Pi);
Y = sim(net,P,Pi)

You want a linear network with two outputs Y1 and Y2 that generate
sequences T1 and T2, given the sequences P1 and P2, with three initial
input delay states Pi1 for input 1 and three initial delays states Pi2
for input 2.

P1 = {1 2 1 3 3 2}; Pi1 = {1 3 0};
P2 = {1 2 1 1 2 1}; Pi2 = {2 1 2};
T1 = {5.0 6.1 4.0 6.0 6.9 8.0};
T2 = {11.0 12.1 10.1 10.9 13.0 13.0};
net = newlind([P1; P2],[T1; T2],[Pi1; Pi2]);
Y = sim(net,[P1; P2],[Pi1; Pi2]);
Y1 = Y(1,:)
Y2 = Y(2,:)

Algorithms newlind calculates weight W and bias B values for a linear layer from
inputs P and targets T by solving this linear equation in the least
squares sense:

[W b] * [P; ones] = T

See Also sim

1-198

newpnn

Purpose Design probabilistic neural network

Syntax net = newpnn(P,T,spread)

Description Probabilistic neural networks (PNN) are a kind of radial basis network
suitable for classification problems.

net = newpnn(P,T,spread) takes two or three arguments,

P R-by-Q matrix of Q input vectors

T S-by-Q matrix of Q target class vectors

spread Spread of radial basis functions (default = 0.1)

and returns a new probabilistic neural network.

If spread is near zero, the network acts as a nearest neighbor classifier.
As spread becomes larger, the designed network takes into account
several nearby design vectors.

Examples Here a classification problem is defined with a set of inputs P and class
indices Tc.

P = [1 2 3 4 5 6 7];
Tc = [1 2 3 2 2 3 1];

The class indices are converted to target vectors, and a PNN is designed
and tested.

T = ind2vec(Tc)
net = newpnn(P,T);
Y = sim(net,P)
Yc = vec2ind(Y)

Algorithms newpnn creates a two-layer network. The first layer has radbas
neurons, and calculates its weighted inputs with dist and its net input
with netprod. The second layer has compet neurons, and calculates its

1-199

newpnn

weighted input with dotprod and its net inputs with netsum. Only
the first layer has biases.

newpnn sets the first-layer weights to P', and the first-layer biases
are all set to 0.8326/spread, resulting in radial basis functions that
cross 0.5 at weighted inputs of +/– spread. The second-layer weights
W2 are set to T.

References Wasserman, P.D., Advanced Methods in Neural Computing, New York,
Van Nostrand Reinhold, 1993, pp. 35–55

See Also sim | ind2vec | vec2ind | newrb | newrbe | newgrnn

1-200

newrb

Purpose Design radial basis network

Syntax net = newrb(P,T,goal,spread,MN,DF)

Description Radial basis networks can be used to approximate functions. newrb
adds neurons to the hidden layer of a radial basis network until it meets
the specified mean squared error goal.

net = newrb(P,T,goal,spread,MN,DF) takes two of these arguments,

P R-by-Q matrix of Q input vectors

T S-by-Q matrix of Q target class vectors

goal Mean squared error goal (default = 0.0)

spread Spread of radial basis functions (default = 1.0)

MN Maximum number of neurons (default is Q)

DF Number of neurons to add between displays
(default = 25)

and returns a new radial basis network.

The larger spread is, the smoother the function approximation. Too
large a spread means a lot of neurons are required to fit a fast-changing
function. Too small a spread means many neurons are required to fit a
smooth function, and the network might not generalize well. Call newrb
with different spreads to find the best value for a given problem.

Examples Here you design a radial basis network, given inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newrb(P,T);

The network is simulated for a new input.

P = 1.5;

1-201

newrb

Y = sim(net,P)

Algorithms newrb creates a two-layer network. The first layer has radbas neurons,
and calculates its weighted inputs with dist and its net input with
netprod. The second layer has purelin neurons, and calculates its
weighted input with dotprod and its net inputs with netsum. Both
layers have biases.

Initially the radbas layer has no neurons. The following steps are
repeated until the network’s mean squared error falls below goal.

1 The network is simulated.

2 The input vector with the greatest error is found.

3 A radbas neuron is added with weights equal to that vector.

4 The purelin layer weights are redesigned to minimize error.

See Also sim | newrbe | newgrnn | newpnn

1-202

newrbe

Purpose Design exact radial basis network

Syntax net = newrbe(P,T,spread)

Description Radial basis networks can be used to approximate functions. newrbe
very quickly designs a radial basis network with zero error on the
design vectors.

net = newrbe(P,T,spread) takes two or three arguments,

P RxQ matrix of Q R-element input vectors

T SxQ matrix of Q S-element target class vectors

spread Spread of radial basis functions (default = 1.0)

and returns a new exact radial basis network.

The larger the spread is, the smoother the function approximation will
be. Too large a spread can cause numerical problems.

Examples Here you design a radial basis network given inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newrbe(P,T);

The network is simulated for a new input.

P = 1.5;
Y = sim(net,P)

Algorithms newrbe creates a two-layer network. The first layer has radbas
neurons, and calculates its weighted inputs with dist and its net input
with netprod. The second layer has purelin neurons, and calculates
its weighted input with dotprod and its net inputs with netsum. Both
layers have biases.

1-203

newrbe

newrbe sets the first-layer weights to P', and the first-layer biases are
all set to 0.8326/spread, resulting in radial basis functions that cross
0.5 at weighted inputs of +/– spread.

The second-layer weights IW{2,1} and biases b{2} are found by
simulating the first-layer outputs A{1} and then solving the following
linear expression:

[W{2,1} b{2}] * [A{1}; ones] = T

See Also sim | newrb | newgrnn | newpnn

1-204

nftool

Purpose Neural network fitting tool

Syntax nftool

Description nftool opens the neural network fitting tool GUI.

Algorithms nftool leads you through solving a data fitting problem, solving it with
a two-layer feed-forward network trained with Levenberg-Marquardt.

See Also nntool

1-205

nncell2mat

Purpose Combine neural network cell data into matrix

Syntax [y,i,j] nncell2mat(x)

Description [y,i,j] nncell2mat(x) takes a cell array of matrices and returns,

y Cell array formed by concatenating matrices

i Array of row sizes

ji Array of column sizes

The row and column sizes returned by nncell2mat can be used to
convert the returned matrix back into a cell of matrices with mat2cell.

Examples Here neural network data is converted to a matrix and back.

c = {rands(2,3) rands(2,3); rands(5,3) rands(5,3)};
[m,i,j] = nncell2mat(c)
c3 = mat2cell(m,i,j)

See Also nndata | nnsize

1-206

nncorr

Purpose Crross correlation between neural network time series

Syntax nncorr(a,b,maxlag,'flag')

Description nncorr(a,b,maxlag,'flag') takes these arguments,

a Matrix or cell array, with columns interpreted as
timesteps, and having a total number of matrix
rows of N.

b Matrix or cell array, with columns interpreted as
timesteps, and having a total number of matrix
rows of M.

maxlag Maximum number of time lags

flag Type of normalization (default = 'none')

and returns an N-by-M cell array where each {i,j} element is a
2*maxlag+1 length row vector formed from the correlations of a
elements (i.e., matrix row) i and b elements (i.e., matrix column) j.

If a and b are specified with row vectors, the result is returned in
matrix form.

The options for the normalization flag are:

• 'biased'— scales the raw cross-correlation by 1/N.

• 'unbiased'— scales the raw correlation by 1/(N-abs(k)), where k
is the index into the result.

• 'coeff'— normalizes the sequence so that the correlations at zero
lag are 1.0.

• 'none' — no scaling. This is the default.

Examples Here the autocorrelation of a random 1-element, 1-sample, 20-timestep
signal is calculated with a maximum lag of 10.

1-207

nncorr

a = nndata(1,1,20)
aa = nncorr(a,a,10)

Here the cross-correlation of the first signal with another random
2-element signal are found, with a maximum lag of 8.

b = nndata(2,1,20)
ab = nncorr(a,b,8)

See Also confusion | regression

1-208

nndata

Purpose Create neural network data

Syntax nndata(N,Q,TS,v)

Description nndata(N,Q,TS,v) takes these arguments,

N Vector of M element sizes

Q Number of samples

TS Number of timesteps

v Scalar value

and returns an M-by-TS cell array where each row i has N(i)-by-Q sized
matrices of value v. If v is not specified, random values are returned.

You can access subsets of neural network data with getelements,
getsamples, gettimesteps, and getsignals.

You can set subsets of neural network data with setelements,
setsamples, settimesteps, and setsignals.

You can concatenate subsets of neural network data with catelements,
catsamples, cattimesteps, and catsignals.

Examples Here four samples of five timesteps, for a 2-element signal consisting
of zero values is created:

x = nndata(2,4,5,0)

To create random data with the same dimensions:

x = nndata(2,4,5)

Here static (1 timestep) data of 12 samples of 4 elements is created.

x = nndata(4,12)

1-209

nndata

See Also nnsize | tonndata | fromnndata | nndata2sim | sim2nndata

1-210

nndata2gpu

Purpose Format neural data for efficient GPU training or simulation

Syntax nndata2gpu(x)
[Y,Q,N,TS] = nndata2gpu(X)
nndata2gpu(X,PRECISION)

Description nndata2gpu requires Parallel Computing Toolbox™.

nndata2gpu(x) takes an N-by-Q matrix X of Q N-element column vectors,
and returns it in a form for neural network training and simulation
on the current GPU device.

The N-by-Q matrix becomes a QQ-by-N gpuArray where QQ is Q rounded
up to the next multiple of 32. The extra rows (Q+1):QQ are filled
with NaN values. The gpuArray has the same precision ('single' or
'double') as X.

[Y,Q,N,TS] = nndata2gpu(X) can also take an M-by-TS cell array of
M signals over TS time steps. Each element of X{i,ts} should be an
Ni-by-Q matrix of Q Ni-element vectors, representing the ith signal
vector at time step ts, across all Q time series. In this case, the
gpuArray Y returned is QQ-by-(sum(Ni)*TS). Dimensions Ni, Q, and TS
are also returned so they can be used with gpu2nndata to perform the
reverse formatting.

nndata2gpu(X,PRECISION) specifies the default precision of the
gpuArray, which can be 'double' or 'single'.

Examples Copy a matrix to the GPU and back:

x = rand(5,6)
[y,q] = nndata2gpu(x)
x2 = gpu2nndata(y,q)

Copy neural network cell array data, representing four time series, each
consisting of five time steps of 2-element and 3-element signals:

x = nndata([2;3],4,5)
[y,q,n,ts] = nndata2gpu(x)

1-211

nndata2gpu

x2 = gpu2nndata(y,q,n,ts)

See Also gpu2nndata

1-212

nndata2sim

Purpose Convert neural network data to Simulink time series

Syntax nndata2sim(x,i,q)

Description nndata2sim(x,i,q) takes these arguments,

x Neural network data

i Index of signal (default = 1)

q Index of sample (default = 1)

and returns time series q of signal i as a Simulink time series structure.

Examples Here random neural network data is created with two signals having
4 and 3 elements respectively, over 10 timesteps. Three such series
are created.

x = nndata([4;3],3,10);

Now the second signal of the first series is converted to Simulink form.

y_2_1 = nndata2sim(x,2,1)

See Also nndata | sim2nndata | nnsize

1-213

nnsize

Purpose Number of neural data elements, samples, timesteps, and signals

Syntax [N,Q,TS,M] = nnsize(X)

Description [N,Q,TS,M] = nnsize(X) takes neural network data x and returns,

N Vector containing the number of element sizes for
each of M signals

Q Number of samples

TS Number of timesteps

M Number of signals

If X is a matrix, N is the number of rows of X, Q is the number of columns,
and both TS and M are 1.

If X is a cell array, N is an Sx1 vector, where M is the number of rows
in X, and N(i) is the number of rows in X{i,1}. Q is the number of
columns in the matrices in X.

Examples This code gets the dimensions of matrix data:

x = [1 2 3; 4 7 4]
[n,q,ts,s] = nnsize(x)

This code gets the dimensions of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
[n,q,ts,s] = nnsize(x)

See Also nndata | numelements | numsamples | numsignals | numtimesteps

1-214

nnstart

Purpose Neural network getting started GUI

Syntax nnstart

Description nnstart opens a window with launch buttons for neural network fitting,
pattern recognition, clustering and time series wizards. It also provides
links to lists of data sets, examples, and other useful information for
getting started.

See Also nctool | nftool | nprtool | ntstool

1-215

nntool

Purpose Open Network/Data Manager

Syntax nntool

Description nntool opens the Network/Data Manager window, which allows you to
import, create, use, and export neural networks and data.

1-216

nntraintool

Purpose Neural network training tool

Syntax nntraintool

Description nntraintool opens the neural network training GUI.

This function can be called to make the training GUI visible before
training has occurred, after training if the window has been closed, or
just to bring the training GUI to the front.

Network training functions handle all activity within the training
window.

To access additional useful plots, related to the current or last network
trained, during or after training, click their respective buttons in the
training window.

1-217

noloop

Purpose Remove neural network open- and closed-loop feedback

Syntax net = noloop(net)

Description net = noloop(net) takes a neural network and returns the network
with open- and closed-loop feedback removed.

For outputs i, where net.outputs{i}.feedbackMode is 'open', the
feedback mode is set to 'none', outputs{i}.feedbackInput is set to
the empty matrix, and the associated network input is deleted.

For outputs i, where net.outputs{i}.feedbackMode is 'closed', the
feedback mode is set to 'none'.

Examples Here a NARX network is designed. The NARX network has a standard
input and an open-loop feedback output to an associated feedback input.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai)

Now the network is converted to no loop form. The output and second
input are no longer associated.

net = noloop(net);
view(net)
[Xs,Xi,Ai] = preparets(net,X,T);
Y = net(Xs,Xi,Ai)

See Also closeloop | openloop

1-218

normc

Purpose Normalize columns of matrix

Syntax normc(M)

Description normc(M) normalizes the columns of M to a length of 1.

Examples m = [1 2; 3 4];
normc(m)
ans =

0.3162 0.4472
0.9487 0.8944

See Also normr

1-219

normprod

Purpose Normalized dot product weight function

Syntax Z = normprod(W,P,FP)
dim = normprod('size',S,R,FP)
dw = normprod('dz_dw',W,P,Z,FP)

Description normprod is a weight function. Weight functions apply weights to an
input to get weighted inputs.

Z = normprod(W,P,FP) takes these inputs,

W S-by-R weight matrix

P R-by-Q matrix of Q input (column) vectors

FP Row cell array of function parameters
(optional, ignored)

and returns the S-by-Q matrix of normalized dot products.

dim = normprod('size',S,R,FP) takes the layer dimension S, input
dimension R, and function parameters, and returns the weight size
[S-by-R].

dw = normprod('dz_dw',W,P,Z,FP) returns the derivative of Z with
respect to W.

Examples Here you define a random weight matrix W and input vector P and
calculate the corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = normprod(W,P)

1-220

normprod

Network
Use

You can create a standard network that uses normprod by calling
newgrnn.

To change a network so an input weight uses normprod, set
net.inputWeight{i,j}.weightFcn to 'normprod'. For a layer weight,
set net.layerWeight{i,j}.weightFcn to 'normprod'.

In either case, call sim to simulate the network with normprod. See
newgrnn for simulation examples.

Algorithms normprod returns the dot product normalized by the sum of the input
vector elements.

z = w*p/sum(p)

See Also dotprod

1-221

normr

Purpose Normalize rows of matrix

Syntax normr(M)

Description normr(M) normalizes the rows of M to a length of 1.

Examples m = [1 2; 3 4];
normr(m)
ans =

0.4472 0.8944
0.6000 0.8000

See Also normc

1-222

nprtool

Purpose Neural network pattern recognition tool

Syntax nprtool

Description nprtool opens the neural network pattern-recognition GUI.

Algorithms nprtool leads you through solving a pattern-recognition classification
problem using a two-layer feed-forward patternnet network with
sigmoid output neurons.

See Also nctool | nftool | ntstool

1-223

ntstool

Purpose Neural network time series tool

Syntax ntstool
ntstool('close')

Description ntstool opens the neural network time series wizard and leads you
through solving a fitting problem using a two-layer feed-forward
network.

ntstool('close') closes the wizard.

See Also nctool | nftool | nprtool

1-224

num2deriv

Purpose Numeric two-point network derivative function

Syntax num2deriv('dperf_dwb',net,X,T,Xi,Ai,EW)
num2deriv('de_dwb',net,X,T,Xi,Ai,EW)

Description This function calculates derivatives using the two-point numeric
derivative rule.

dy
dx

y x dx y x
dx

= + −() ()

This function is much slower than the analytical (non-numerical)
derivative functions, but is provided as a means of checking the
analytical derivative functions. The other numerical function,
num5deriv, is slower but more accurate.

num2deriv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network

X Inputs, an RxQ matrix (or NxTS cell array of
RixQ matrices)

T Targets, an SxQ matrix (or MxTS cell array of
SixQ matrices)

Xi Initial input delay states (optional)

Ai Initial layer delay states (optional)

EW Error weights (optional)

and returns the gradient of performance with respect to the network’s
weights and biases, where R and S are the number of input and output
elements and Q is the number of samples (and N and M are the number
of input and output signals, Ri and Si are the number of each input and
outputs elements, and TS is the number of timesteps).

num2deriv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of
errors with respect to the network’s weights and biases.

1-225

num2deriv

Examples Here a feedforward network is trained and both the gradient and
Jacobian are calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
dwb = num2deriv('dperf_dwb',net,x,t)

See Also bttderiv | defaultderiv | fpderiv | num5deriv | staticderiv

1-226

num5deriv

Purpose Numeric five-point stencil neural network derivative function

Syntax num5deriv('dperf_dwb',net,X,T,Xi,Ai,EW)
num5deriv('de_dwb',net,X,T,Xi,Ai,EW)

Description This function calculates derivatives using the five-point numeric
derivative rule.

y y x dx

y y x dx

y y x dx

y y x dx

dy
dx

y y y

1

2

3

4

2 3

2

2

1 8 8

= +
= +
= −
= −

=
− + −

()

()

()

()

yy
dx

4

This function is much slower than the analytical (non-numerical)
derivative functions, but is provided as a means of checking the
analytical derivative functions. The other numerical function,
num2deriv, is faster but less accurate.

num5deriv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network

X Inputs, an RxQ matrix (or NxTS cell array of
RixQ matrices)

T Targets, an SxQ matrix (or MxTS cell array of
SixQ matrices)

Xi Initial input delay states (optional)

Ai Initial layer delay states (optional)

EW Error weights (optional)

and returns the gradient of performance with respect to the network’s
weights and biases, where R and S are the number of input and output

1-227

num5deriv

elements and Q is the number of samples (and N and M are the number
of input and output signals, Ri and Si are the number of each input and
outputs elements, and TS is the number of timesteps).

num5deriv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of
errors with respect to the network’s weights and biases.

Examples Here a feedforward network is trained and both the gradient and
Jacobian are calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
dwb = num5deriv('dperf_dwb',net,x,t)

See Also bttderiv | defaultderiv | fpderiv | num2deriv | staticderiv

1-228

numelements

Purpose Number of elements in neural network data

Syntax numelements(x)

Description numelements(x) takes neural network data x in matrix or cell array
form, and returns the number of elements in each signal.

If x is a matrix the result is the number of rows of x.

If x is a cell array the result is an S-by-1 vector, where S is the number
of signals (i.e., rows of X), and each element S(i) is the number of
elements in each signal i (i.e., rows of x{i,1}).

Examples This code calculates the number of elements represented by matrix data:

x = [1 2 3; 4 7 4]
n = numelements(x)

This code calculates the number of elements represented by cell data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numelements(x)

See Also nndata | nnsize | getelements | setelements | catelements |
numsamples | numsignals | numtimesteps

1-229

numfinite

Purpose Number of finite values in neural network data

Syntax numfinite(x)

Description numfinite(x) takes a matrix or cell array of matrices and returns
the number of finite elements in it.

Examples x = [1 2; 3 NaN]
n = numfinite(x)

x = {[1 2; 3 NaN] [5 NaN; NaN 8]}
n = numfinite(x)

See Also numnan | nndata | nnsize

1-230

numnan

Purpose Number of NaN values in neural network data

Syntax numnan(x)

Description numnan(x) takes a matrix or cell array of matrices and returns the
number of NaN elements in it.

Examples x = [1 2; 3 NaN]
n = numnan(x)

x = {[1 2; 3 NaN] [5 NaN; NaN 8]}
n = numnan(x)

See Also numnan | nndata | nnsize

1-231

numsamples

Purpose Number of samples in neural network data

Syntax numsamples(x)

Description numsamples(x) takes neural network data x in matrix or cell array
form, and returns the number of samples.

If x is a matrix, the result is the number of columns of x.

If x is a cell array, the result is the number of columns of the matrices
in x.

Examples This code calculates the number of samples represented by matrix data:

x = [1 2 3; 4 7 4]
n = numsamples(x)

This code calculates the number of samples represented by cell data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numsamples(x)

See Also nndata | nnsize | getsamples | setsamples | catsamples |
numelements | numsignals | numtimesteps

1-232

numsignals

Purpose Number of signals in neural network data

Syntax numsignals(x)

Description numsignals(x) takes neural network data x in matrix or cell array
form, and returns the number of signals.

If x is a matrix, the result is 1.

If x is a cell array, the result is the number of rows in x.

Examples This code calculates the number of signals represented by matrix data:

x = [1 2 3; 4 7 4]
n = numsignals(x)

This code calculates the number of signals represented by cell data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numsignals(x)

See Also nndata | nnsize | getsignals | setsignals | catsignals |
numelements | numsamples | numtimesteps

1-233

numtimesteps

Purpose Number of time steps in neural network data

Syntax numtimesteps(x)

Description numtimesteps(x) takes neural network data x in matrix or cell array
form, and returns the number of signals.

If x is a matrix, the result is 1.

If x is a cell array, the result is the number of columns in x.

Examples This code calculates the number of time steps represented by matrix
data:

x = [1 2 3; 4 7 4]
n = numtimesteps(x)

This code calculates the number of time steps represented by cell data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numtimesteps(x)

See Also nndata | nnsize | gettimesteps | settimesteps | cattimesteps |
numelements | numsamples | numsignals

1-234

openloop

Purpose Convert neural network closed-loop feedback to open loop

Syntax net = openloop(net)

Description net = openloop(net) takes a neural network and opens any
closed-loop feedback. For each feedback output i whose property
net.outputs{i}.feedbackMode is 'closed', it replaces its associated
feedback layer weights with a new input and input weight connections.
The net.outputs{i}.feedbackMode property is set to 'open', and the
net.outputs{i}.feedbackInput property is set to the index of the
new input. Finally, the value of net.outputs{i}.feedbackDelays is
subtracted from the delays of the feedback input weights (i.e., to the
delays values of the replaced layer weights).

Examples Here a NARX network is designed in open-loop form and then converted
to closed-loop form, then converted back.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Yopen = net(Xs,Xi,Ai)
net = closeloop(net)
view(net)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
Yclosed = net(Xs,Xi,Ai);
net = openloop(net)
view(net)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
Yopen = net(Xs,Xi,Ai)

See Also closeloop | noloop

1-235

patternnet

Purpose Pattern recognition network

Syntax patternnet(hiddenSizes,trainFcn)

Description Pattern recognition networks are feedforward networks that can be
trained to classify inputs according to target classes. The target data for
pattern recognition networks should consist of vectors of all zero values
except for a 1 in element i, where i is the class they are to represent.

patternnet(hiddenSizes,trainFcn) takes these arguments,

hiddenSizes Row vector of one or more hidden layer sizes
(default = 10)

trainFcn Training function (default = 'trainscg')

and returns a pattern recognition neural network.

Examples Here a pattern recognition network is designed to classify iris flowers.

[x,t] = iris_dataset;
net = patternnet(10)
net = train(net,x,t);
view(net)
y = net(x);
perf = perform(net,t,y)
classes = vec2ind(y)

See Also lvqnet | competlayer | selforgmap | nprtool

1-236

perceptron

Purpose Perceptron

Syntax perceptron(hardlimitTF,perceptronLF)

Syntax

Description Perceptrons are simple single-layer binary classifiers, which divide the
input space with a linear decision boundary.

Perceptrons are provide for historical interest. For much better results
use patternnet, which can solve non-linearly separable problems.
Sometimes when people refer to perceptrons they are referring to
feed-forward pattern recognition networks, such as patternnet. But
the original perceptron, described here, can solve only very simple
problems.

Perceptrons can learn to solve a narrow class of classification problems.
Their significance is they have a simple learning rule and were one of
the first neural networks to reliably solve a given class of problems.

perceptron(hardlimitTF,perceptronLF) takes these arguments,

hardlimitTF Hard limit transfer function (default =
'hardlim')

perceptronLF Perceptron learning rule (default =
'learnp')

and returns a perceptron.

In addition to the default hard limit transfer functions, perceptrons can
be created with the hardlims transfer function. The other option for the
perceptron learning rule is learnpn.

Examples Here a perceptron is used to solve a very simple classification logical-OR
problem.

x = [0 0 1 1; 0 1 0 1];

1-237

perceptron

t = [0 1 1 1];
net = perceptron;
net = train(net,x,t);
view(net)
y = net(x);

See Also preparets | removedelay | timedelaynet | narnet | narxnet

1-238

perform

Purpose Calculate network performance

Syntax perform(net,t,y,ew)

Description perform(net,t,y,ew) takes these arguments,

net Neural network

t Target data

y Output data

ew Error weights (default = {1})

and returns network performance calculated according to the
net.performFcn and net.performParam property values.

The target and output data must have the same dimensions. The error
weights may be the same dimensions as the targets, in the most general
case, but may also have any of its dimension be 1. This gives the
flexibilty of defining error weights across any dimension desired.

Error weights can be defined by sample, output element, time step,
or network output:

ew = [1.0 0.5 0.7 0.2]; % Across 4 samples
ew = [0.1; 0.5; 1.0]; % Across 3 elements
ew = {0.1 0.2 0.3 0.5 1.0}; % Across 5 timesteps
ew = {1.0; 0.5}; % Across 2 outputs

The may also be defined across any combination, such as across two
time-series (i.e. two samples) over four timesteps.

ew = {[0.5 0.4],[0.3 0.5],[1.0 1.0],[0.7 0.5]};

In the general case, error weights may have exactly the same
dimensions as targets, in which case each target value will have an
associated error weight.

1-239

perform

The default error weight treats all errors the same.

ew = {1}

Examples Here a simple fitting problem is solved with a feed-forward network
and its performance calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y)

See Also train | configure | init

1-240

plotconfusion

Purpose Plot classification confusion matrix

Syntax plotconfusion(targets,outputs)
plotconfusion(targets1,outputs1,'name1',...)

Description plotconfusion(targets,outputs) displays the classification
confusion grid.

plotconfusion(targets1,outputs1,'name1',...) displays a series
of plots.

Examples load simpleclass_dataset
net = patternnet(20);
net = train(net,simpleclassInputs,simpleclassTargets);
simpleclassOutputs = sim(net,simpleclassInputs);
plotconfusion(simpleclassTargets,simpleclassOutputs);

1-241

plotep

Purpose Plot weight-bias position on error surface

Syntax H= plotep(W,B,E)
H = plotep(W,B,E,H)

Description plotep is used to show network learning on a plot already created by
plotes.

H= plotep(W,B,E) takes these arguments,

W Current weight value

B Current bias value

E Current error

and returns a vector H, containing information for continuing the plot.

H = plotep(W,B,E,H) continues plotting using the vector H returned
by the last call to plotep.

H contains handles to dots plotted on the error surface, so they can be
deleted next time, as well as points on the error contour, so they can be
connected.

See Also errsurf | plotes

1-242

ploterrcorr

Purpose Plot autocorrelation of error time series

Syntax ploterrcorr(error)
ploterrcorr(errors,'outputIndex',outIdx)

Description ploterrcorr(error) takes an error time series and plots the
autocorrelation of errors across varying lags.

ploterrcorr(errors,'outputIndex',outIdx) uses the optional
property name/value pair to define which output error autocorrelation
is plotted. The default is 1.

Examples Here a NARX network is used to solve a time series problem.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
Y = net(Xs,Xi,Ai);
E = gsubtract(Ts,Y);
ploterrcorr(E)

See Also plotinerrcorr | plotresponse

1-243

ploterrhist

Purpose Plot error histogram

Syntax ploterrhist(e)
ploterrhist(e1,'name1',e2,'name2',...)
ploterrhist(...,'bins',bins)

Description ploterrhist(e) plots a histogram of error values e.

ploterrhist(e1,'name1',e2,'name2',...) takes any number of
errors and names and plots each pair.

ploterrhist(...,'bins',bins) takes an optional property
name/value pair which defines the number of bins to use in the
histogram plot. The default is 20.

Examples Here a feedforward network is used to solve a simple fitting problem:

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
e = t - y;
ploterrhist(e,'bins',30)

See Also plotconfusion | ploterrcorr | plotinerrcorr

1-244

plotes

Purpose Plot error surface of single-input neuron

Syntax plotes(WV,BV,ES,V)

Description plotes(WV,BV,ES,V) takes these arguments,

WV 1-by-N row vector of values of W

BV 1-by-M row vector of values of B

ES M-by-N matrix of error vectors

V View (default = [-37.5, 30])

and plots the error surface with a contour underneath.

Calculate the error surface ES with errsurf.

Examples p = [3 2];
t = [0.4 0.8];
wv = -4:0.4:4; bv = wv;
ES = errsurf(p,t,wv,bv,'logsig');
plotes(wv,bv,ES,[60 30])

See Also errsurf

1-245

plotfit

Purpose Plot function fit

Syntax plotfit(NET,INPUTS,TARGETS)
plotfit(targets1,inputs1,'name1',...)

Description plotfit(NET,INPUTS,TARGETS) plots the output function of a network
across the range of the inputs INPUTS and also plots target TARGETS and
output data points associated with values in INPUTS. Error bars show
the difference between outputs and INPUTS.

The plot appears only for networks with one input.

Only the first output/targets appear if the network has more than one
output.

plotfit(targets1,inputs1,'name1',...) displays a series of plots.

Examples load simplefit_dataset
net = fitnet(20);
[net,tr] = train(net,simplefitInputs,simplefitTargets);
plotfit(net,simplefitInputs,simplefitTargets);

See Also plottrainstate

1-246

plotinerrcorr

Purpose Plot input to error time-series cross correlation

Syntax plotinerrcorr(x,e)
plotinerrcorr(...,'inputIndex',inputIndex)
plotinerrcorr(...,'outputIndex',outputIndex)

Description plotinerrcorr(x,e) takes an input time series x and an error time
series e, and plots the autocorrelation of inputs to errors across varying
lags.

plotinerrcorr(...,'inputIndex',inputIndex) optionally defines
which input element is being correlated and plotted. The default is 1.

plotinerrcorr(...,'outputIndex',outputIndex) optionally defines
which error element is being correlated and plotted. The default is 1.

Examples Here a NARX network is used to solve a time series problem.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
Y = net(Xs,Xi,Ai);
E = gsubtract(Ts,Y);
ploterrcorr(E)
plotinerrcorr(Xs,E)

See Also ploterrcorr | plotresponse | ploterrhist

1-247

plotpc

Purpose Plot classification line on perceptron vector plot

Syntax plotpc(W,B)
plotpc(W,B,H)

Description plotpc(W,B) takes these inputs,

W S-by-R weight matrix (R must be 3 or less)

B S-by-1 bias vector

and returns a handle to a plotted classification line.

plotpc(W,B,H) takes an additional input,

H Handle to last plotted line

and deletes the last line before plotting the new one.

This function does not change the current axis and is intended to be
called after plotpv.

Examples The code below defines and plots the inputs and targets for a perceptron:

p = [0 0 1 1; 0 1 0 1];
t = [0 0 0 1];
plotpv(p,t)

The following code creates a perceptron with inputs ranging over the
values in P, assigns values to its weights and biases, and plots the
resulting classification line.

net = newp(minmax(p),1);
net.iw{1,1} = [-1.2 -0.5];
net.b{1} = 1;
plotpc(net.iw{1,1},net.b{1})

1-248

plotpc

See Also plotpv

1-249

plotperform

Purpose Plot network performance

Syntax plotperform(TR)

Description plotperform(TR) plots the training, validation, and test performances
given the training record TR returned by the function train.

Examples [x,t] = house_dataset;
net = feedforwardnet(10);
[net,tr] = train(net,x,t);
plotperform(tr)

1-250

plotperform

See Also plottrainstate

1-251

plotpv

Purpose Plot perceptron input/target vectors

Syntax plotpv(P,T)
plotpv(P,T,V)

Description plotpv(P,T) takes these inputs,

P R-by-Q matrix of input vectors (R must be 3 or less)

T S-by-Q matrix of binary target vectors (S must be
3 or less)

and plots column vectors in P with markers based on T.

plotpv(P,T,V) takes an additional input,

V Graph limits = [x_min x_max y_min y_max]

and plots the column vectors with limits set by V.

Examples The code below defines and plots the inputs and targets for a perceptron:

p = [0 0 1 1; 0 1 0 1];
t = [0 0 0 1];
plotpv(p,t)

The following code creates a perceptron with inputs ranging over the
values in P, assigns values to its weights and biases, and plots the
resulting classification line.

net = newp(minmax(p),1);
net.iw{1,1} = [-1.2 -0.5];
net.b{1} = 1;
plotpc(net.iw{1,1},net.b{1})

See Also plotpc

1-252

plotregression

Purpose Plot linear regression

Syntax plotregression(targets,outputs)
plotregression(targs1,outs1,'name1',targs2,outs2,'name2',...)

Description plotregression(targets,outputs) plots the linear regression of
targets relative to outputs.

plotregression(targs1,outs1,'name1',targs2,outs2,'name2',...)
generates multiple plots.

Examples [x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = train(net,x,t);
y = net(x);
plotregression(t,y,'Regression')

1-253

plotregression

See Also plottrainstate

1-254

plotresponse

Purpose Plot dynamic network time series response

Syntax plotresponse(t,y)
plotresponse(t1,'name',t2,'name2',...,y)
plotresponse(...,'outputIndex',outputIndex)

Description plotresponse(t,y) takes a target time series t and an output time
series y, and plots them on the same axis showing the errors between
them.

plotresponse(t1,'name',t2,'name2',...,y) takes multiple
target/name pairs, typically defining training, validation and testing
targets, and the output. It plots the responses with colors indicating
the different target sets.

plotresponse(...,'outputIndex',outputIndex) optionally defines
which error element is being correlated and plotted. The default is 1.

Examples Here a NARX network is used to solve a time series problem.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
Y = net(Xs,Xi,Ai);
plotresponse(Ts,Y)

See Also ploterrcorr | plotinerrcorr | ploterrhist

1-255

plotroc

Purpose Plot receiver operating characteristic

Syntax plotroc(targets,outputs)
plotroc(targets1,outputs2,'name1',...)

Description plotroc(targets,outputs) plots the receiver operating characteristic
for each output class. The more each curve hugs the left and top edges
of the plot, the better the classification.

plotroc(targets1,outputs2,'name1',...) generates multiple plots.

Examples load simplecluster_dataset
net = patternnet(20);
net = train(net,simpleclusterInputs,simpleclusterTargets);
simpleclusterOutputs = sim(net,simpleclusterInputs);
plotroc(simpleclusterTargets,simpleclusterOutputs);

1-256

plotroc

See Also roc

1-257

plotsom

Purpose Plot self-organizing map

Syntax plotsom(pos)
plotsom(W,D,ND)

Description plotsom(pos) takes one argument,

POS N-by-S matrix of S N-dimension neural positions

and plots the neuron positions with red dots, linking the neurons within
a Euclidean distance of 1.

plotsom(W,D,ND) takes three arguments,

W S-by-R weight matrix

D S-by-S distance matrix

ND Neighborhood distance (default = 1)

and plots the neuron’s weight vectors with connections between weight
vectors whose neurons are within a distance of 1.

Examples This code generates plots of various layer topologies.

pos = hextop(5,6); plotsom(pos)
pos = gridtop(4,5); plotsom(pos)
pos = randtop(18,12); plotsom(pos)
pos = gridtop(4,5,2); plotsom(pos)
pos = hextop(4,4,3); plotsom(pos)

See newsom for an example of plotting a layer’s weight vectors with
the input vectors they map.

See Also initsompc | learnsom

1-258

plotsomhits

Purpose Plot self-organizing map sample hits

Syntax plotsomhits(net,inputs)

Description plotsomhits(net,inputs) plots a SOM layer, with each neuron showing
the number of input vectors that it classifies. The relative number of
vectors for each neuron is shown via the size of a colored patch.

Examples x = iris_dataset;
net = selforgmap([5 5]);
net = train(net,x);
plotsomhits(net,x);

1-259

plotsomhits

See Also plotsomplanes

1-260

plotsomnc

Purpose Plot self-organizing map neighbor connections

Syntax plotsomnc(net)

Description plotsomnc(net) plots a SOM layer showing neurons as gray-blue
patches and their direct neighbor relations with red lines.

Examples x = iris_dataset;
net = selforgmap([8 8]);
net = train(net,x);
plotsomnc(net)

1-261

plotsomnc

See Also plotsomnd | plotsomplanes | plotsomhits

1-262

plotsomnd

Purpose Plot self-organizing map neighbor distances

Syntax plotsomnd(net)

Description plotsomnd(net) plots a SOM layer showing neurons as gray-blue
patches and their direct neighbor relations with red lines. The neighbor
patches are colored from black to yellow to show how close each neuron’s
weight vector is to its neighbors.

Examples x = iris_dataset;
net = selforgmap([5 5]);
net = train(net,x);
plotsomnd(net);

1-263

plotsomnd

See Also plotsomhits | plotsomnc | plotsomplanes

1-264

plotsomplanes

Purpose Plot self-organizing map weight planes

Syntax plotsomplanes(net)

Description plotsomplanes(net) generates a set of subplots. Each ith subplot
shows the weights from the ith input to the layer’s neurons, with the
most negative connections shown as blue, zero connections as black,
and the strongest positive connections as red.

The plot is only shown for layers organized in one or two dimensions.

This function can also be called with standardized plotting function
arguments used by the function train.

Examples x = iris_dataset;
net = selforgmap([5 5]);
net = train(net,x);
plotsomplanes(net)

1-265

plotsomplanes

See Also plotsomhits | plotsomnc | plotsomnd

1-266

plotsompos

Purpose Plot self-organizing map weight positions

Syntax plotsompos(net)
plotsompos(net,inputs)

Description plotsompos(net) plots the input vectors as green dots and shows how
the SOM classifies the input space by showing blue-gray dots for each
neuron’s weight vector and connecting neighboring neurons with red
lines.

plotsompos(net,inputs) plots the input data alongside the weights.

Examples x = iris_dataset;
net = selforgmap([10 10]);
net = train(net,x);
plotsompos(net,x)

1-267

plotsompos

See Also plotsomnd | plotsomplanes | plotsomhits

1-268

plotsomtop

Purpose Plot self-organizing map topology

Syntax plotsomtop(net)

Description plotsomtop(net) plots the topology of a SOM layer.

Examples x = iris_dataset;
net = selforgmap([8 8]);
plotsomtop(net);

1-269

plotsomtop

See Also plotsomnd | plotsomplanes | plotsomhits

1-270

plottrainstate

Purpose Plot training state values

Syntax plottrainstate(tr)

Description plottrainstate(tr) plots the training state from a training record tr
returned by train.

Examples [x,t] = house_dataset;
net = feedforwardnet(10);
[net,tr] = train(net,x,t);
plottrainstate(tr)

1-271

plottrainstate

See Also plotfit | plotperform | plotregression

1-272

plotv

Purpose Plot vectors as lines from origin

Syntax plotv(M,T)

Description plotv(M,T) takes two inputs,

M R-by-Q matrix of Q column vectors with R elements

T The line plotting type (optional; default = '-')

and plots the column vectors of M.

R must be 2 or greater. If R is greater than 2, only the first two rows
of M are used for the plot.

Examples plotv([-.4 0.7 .2; -0.5 .1 0.5],'-')

1-273

plotvec

Purpose Plot vectors with different colors

Syntax plotvec(X,C,M)

Description plotvec(X,C,M) takes these inputs,

X Matrix of (column) vectors

C Row vector of color coordinates

M Marker (default = '+')

and plots each ith vector in X with a marker M, using the ith value in
C as the color coordinate.

plotvec(X) only takes a matrix X and plots each ith vector in X with
marker '+' using the index i as the color coordinate.

Examples x = [0 1 0.5 0.7; -1 2 0.5 0.1];
c = [1 2 3 4];
plotvec(x,c)

1-274

plotwb

Purpose Plot Hinton diagram of weight and bias values

Syntax plotwb(net)
plotwb(IW,LW,B)
plotwb(...,'toLayers',toLayers)
plotwb(...,'fromInputs',fromInputs)
plotwb(...,'fromLayers',fromLayers)
plotwb(...,'root',root)

Description plotwb(net) takes a neural network and plots all its weights and
biases.

plotwb(IW,LW,B) takes a neural networks input weights, layer weights
and biases and plots them.

plotwb(...,'toLayers',toLayers) optionally defines which
destination layers whose input weights, layer weights and biases will
be plotted.

plotwb(...,'fromInputs',fromInputs) optionally defines which
inputs will have their weights plotted.

plotwb(...,'fromLayers',fromLayers) optionally defines which
layers will have weights coming from them plotted.

plotwb(...,'root',root) optionally defines the root used to scale
the weight/bias patch sizes. The default is 2, which makes the
2-dimensional patch sizes scale directly with absolute weight and bias
sizes. Larger values of root magnify the relative patch sizes of smaller
weights and biases, making differences in smaller values easier to see.

Examples Here a cascade-forward network is configured for particular data and
its weights and biases are plotted in several ways.

[x,t] = simplefit_dataset;
net = cascadeforwardnet([15 5]);
net = configure(net,x,t);
plotwb(net)
plotwb(net,'root',3)

1-275

plotwb

plotwb(net,'root',4)
plotwb(net,'toLayers',2)
plotwb(net,'fromLayers',1)
plotwb(net,'toLayers',2,'fromInputs',1)

See Also plotsomplanes

1-276

pnormc

Purpose Pseudonormalize columns of matrix

Syntax pnormc(X,R)

Description pnormc(X,R) takes these arguments,

X M-by-N matrix

R (Optional) radius to normalize columns to (default
= 1)

and returns X with an additional row of elements, which results in new
column vector lengths of R.

Caution For this function to work properly, the columns of X must
originally have vector lengths less than R.

Examples x = [0.1 0.6; 0.3 0.1];
y = pnormc(x)

See Also normc | normr

1-277

poslin

Purpose Positive linear transfer function

Graph
and
Symbol

Syntax A = poslin(N,FP)
info = poslin('code')

Description poslin is a neural transfer function. Transfer functions calculate a
layer’s output from its net input.

A = poslin(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N’s elements clipped to [0, inf].

info = poslin('code') returns information about this function. The
following codes are supported:

poslin('name') returns the name of this function.

poslin('output',FP) returns the [min max] output range.

poslin('active',FP) returns the [min max] active range.

poslin('fullderiv') returns 1 or 0, depending on whether dA_dN is
S-by-S-by-Q or S-by-Q.

poslin('fpnames') returns the names of the function parameters.

poslin('fpdefaults') returns the default function parameters.

1-278

poslin

Examples Here is the code to create a plot of the poslin transfer function.

n = -5:0.1:5;
a = poslin(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'poslin';

Network
Use

To change a network so that a layer uses poslin, set
net.layers{i}.transferFcn to 'poslin'.

Call sim to simulate the network with poslin.

Algorithms The transfer function poslin returns the output n if n is greater than or
equal to zero and 0 if n is less than or equal to zero.

poslin(n) = n, if n >= 0
= 0, if n <= 0

See Also sim | purelin | satlin | satlins

1-279

preparets

Purpose Prepare input and target time series data for network simulation or
training

Syntax [Xs,Xi,Ai,Ts,EWs,shift] = preparets(net,Xnf,Tnf,Tf,EW)

Description This function simplifies the normally complex and error prone task of
reformatting input and target time series. It automatically shifts input
and target time series as many steps as are needed to fill the initial
input and layer delay states. If the network has open loop feedback,
then it copies feedback targets into the inputs as needed to define the
open loop inputs.

Each time a new network is designed, with different numbers of delays
or feedback settings, preparets can be called to reformat input and
target data accordingly. Also, each time a network is transformed
with openloop, closeloop, removedelay or adddelay, this function
can reformat the data accordingly.

[Xs,Xi,Ai,Ts,EWs,shift] = preparets(net,Xnf,Tnf,Tf,EW) takes
these arguments,

net Neural network

Xnf Non-feedback inputs

Tnf Non-feedback targets

Tf Feedback targets

EW Error weights (default = {1})

and returns,

Xs Shifted inputs

Xi Initial input delay states

Ai Initial layer delay states

Ts Shifted targets

1-280

preparets

EWs Shifted error weights

shift The number of timesteps truncated from the
front of X and T in order to properly fill Xi and Ai.

Examples Here a time-delay network with 20 hidden neurons is created, trained
and simulated.

net = timedelaynet(20);
view(net)
[X,T] = simpleseries_dataset;
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts);
Y = net(Xs,Xi,Ai)

Here a NARX network is designed. The NARX network has a standard
input and an open-loop feedback output to an associated feedback input.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,20);
view(net)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
y = net(Xs,Xi,Ai);

Now the network is converted to closed loop, and the data is reformatted
to simulate the network’s closed-loop response.

net = closeloop(net);
view(net)
[Xs,Xi,Ai] = preparets(net,X,{},T);
y = net(Xs,Xi,Ai);

See Also adddelay | closeloop | narnet | narxnet | openloop | removedelay
| timedelaynet

1-281

processpca

Purpose Process columns of matrix with principal component analysis

Syntax [Y,PS] = processpca(X,maxfrac)
[Y,PS] = processpca(X,FP)
Y = processpca('apply',X,PS)
X = processpca('reverse',Y,PS)
name = processpca('name')
fp = processpca('pdefaults')
names = processpca('pdesc')
processpca('pcheck',fp);

Description processpca processes matrices using principal component analysis so
that each row is uncorrelated, the rows are in the order of the amount
they contribute to total variation, and rows whose contribution to total
variation are less than maxfrac are removed.

[Y,PS] = processpca(X,maxfrac) takes X and an optional parameter,

X N-by-Q matrix or a 1-by-TS row cell array of
N-by-Q matrices

maxfrac Maximum fraction of variance for removed rows
(default is 0)

and returns

Y Each N-by-Q matrix with N - M rows deleted
(optional)

PS Process settings that allow consistent processing
of values

[Y,PS] = processpca(X,FP) takes parameters as a struct:
FP.maxfrac.

Y = processpca('apply',X,PS) returns Y, given X and settings PS.

1-282

processpca

X = processpca('reverse',Y,PS) returns X, given Y and settings PS.

name = processpca('name') returns the name of this process method.

fp = processpca('pdefaults') returns default process parameter
structure.

names = processpca('pdesc') returns the process parameter
descriptions.

processpca('pcheck',fp); throws an error if any parameter is illegal.

Examples Here is how to format a matrix with an independent row, a correlated
row, and a completely redundant row so that its rows are uncorrelated
and the redundant row is dropped.

x1_independent = rand(1,5)
x1_correlated = rand(1,5) + x_independent;
x1_redundant = x_independent + x_correlated
x1 = [x1_independent; x1_correlated; x1_redundant]
[y1,ps] = processpca(x1)

Next, apply the same processing settings to new values.

x2_independent = rand(1,5)
x2_correlated = rand(1,5) + x_independent;
x2_redundant = x_independent + x_correlated
x2 = [x2_independent; x2_correlated; x2_redundant];
y2 = processpca('apply',x2,ps)

Reverse the processing of y1 to get x1 again.

x1_again = processpca('reverse',y1,ps)

Algorithms Values in rows whose elements are not all the same value are set to

y = 2*(x-minx)/(maxx-minx) - 1;

Values in rows with all the same value are set to 0.

1-283

processpca

Definitions In some situations, the dimension of the input vector is large, but the
components of the vectors are highly correlated (redundant). It is useful
in this situation to reduce the dimension of the input vectors. An
effective procedure for performing this operation is principal component
analysis. This technique has three effects: it orthogonalizes the
components of the input vectors (so that they are uncorrelated with
each other), it orders the resulting orthogonal components (principal
components) so that those with the largest variation come first, and it
eliminates those components that contribute the least to the variation
in the data set. The following code illustrates the use of processpca,
which performs a principal-component analysis using the processing
setting maxfrac of 0.02.

[pn,ps1] = mapstd(p);
[ptrans,ps2] = processpca(pn,0.02);

The input vectors are first normalized, using mapstd, so that they have
zero mean and unity variance. This is a standard procedure when using
principal components. In this example, the second argument passed
to processpca is 0.02. This means that processpca eliminates those
principal components that contribute less than 2% to the total variation
in the data set. The matrix ptrans contains the transformed input
vectors. The settings structure ps2 contains the principal component
transformation matrix. After the network has been trained, these
settings should be used to transform any future inputs that are applied
to the network. It effectively becomes a part of the network, just like
the network weights and biases. If you multiply the normalized input
vectors pn by the transformation matrix transMat, you obtain the
transformed input vectors ptrans.

If processpca is used to preprocess the training set data, then
whenever the trained network is used with new inputs, you should
preprocess them with the transformation matrix that was computed for
the training set, using ps2. The following code applies a new set of
inputs to a network already trained.

pnewn = mapstd('apply',pnew,ps1);
pnewtrans = processpca('apply',pnewn,ps2);

1-284

processpca

a = sim(net,pnewtrans);

Principal component analysis is not reliably reversible. Therefore it is
only recommended for input processing. Outputs require reversible
processing functions.

Principal component analysis is not part of the default processing for
feedforwardnet. If you wish to add this, you can use the following
command:

net.inputs{1}.processFcns{end+1} = 'processpca';

See Also fixunknowns | mapminmax | mapstd

1-285

prune

Purpose Delete neural inputs, layers, and outputs with sizes of zero

Syntax [net,pi,pl,po] = prune(net)

Description This function removes zero-sized inputs, layers, and outputs from a
network. This leaves a network which may have fewer inputs and
outputs, but which implements the same operations, as zero-sized
inputs and outputs do not convey any information.

One use for this simplification is to prepare a network with zero sized
subobjects for Simulink, where zero sized signals are not supported.

The companion function prunedata can prune data to remain consistent
with the transformed network.

[net,pi,pl,po] = prune(net) takes a neural network and returns

net The same network with zero-sized subobjects
removed

pi Indices of pruned inputs

pl Indices of pruned layers

po Indices of pruned outputs

Examples Here a NARX dynamic network is created which has one external input
and a second input which feeds back from the output.

net = narxnet(20);
view(net)

The network is then trained on a single random time-series problem
with 50 timesteps. The external input happens to have no elements.

X = nndata(0,1,50);
T = nndata(1,1,50);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts);

1-286

prune

The network and data are then pruned before generating a Simulink
diagram and initializing its input and layer states.

[net2,pi,pl,po] = prune(net);
view(net)
[Xs2,Xi2,Ai2,Ts2] = prunedata(net,pi,pl,po,Xs,Xi,Ai,Ts)
[sysName,netName] = gensim(net);
setsiminit(sysName,netName,Xi2,Ai2)

See Also prunedata | gensim

1-287

prunedata

Purpose Purpose

Syntax [Xp,Xip,Aip,Tp] = prunedata(pi,pl,po,X,Xi,Ai,T)

Description This function prunes data to be consistent with a network whose
zero-sized inputs, layers, and outputs have been removed with prune.

One use for this simplification is to prepare a network with zero-sized
subobjects for Simulink, where zero-sized signals are not supported.

[Xp,Xip,Aip,Tp] = prunedata(pi,pl,po,X,Xi,Ai,T) takes these
arguments,

pi Indices of pruned inputs

pl Indices of pruned layers

po Indices of pruned outputs

X Input data

Xi Initial input delay states

Ai Initial layer delay states

T Target data

and returns the pruned inputs, input and layer delay states, and targets.

Examples Here a NARX dynamic network is created which has one external input
and a second input which feeds back from the output.

net = narxnet(20);
view(net)

The network is then trained on a single random time-series problem
with 50 timesteps. The external input happens to have no elements.

X = nndata(0,1,50);
T = nndata(1,1,50);

1-288

prunedata

[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts);

The network and data are then pruned before generating a Simulink
diagram and initializing its input and layer states.

[net2,pi,pl,po] = prune(net);
view(net)
[Xs2,Xi2,Ai2,Ts2] = prunedata(net,pi,pl,po,Xs,Xi,Ai,Ts)
[sysName,netName] = gensim(net);
setsiminit(sysName,netName,Xi2,Ai2)

See Also prune | gensim

1-289

purelin

Purpose Linear transfer function

Graph
and
Symbol

Syntax A = purelin(N,FP)
info = purelin('code')

Description purelin is a neural transfer function. Transfer functions calculate a
layer’s output from its net input.

A = purelin(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)

and returns A, an S-by-Q matrix equal to N.

info = purelin('code') returns useful information for each
supported code string:

purelin('name') returns the name of this function.

purelin('output',FP) returns the [min max] output range.

purelin('active',FP) returns the [min max] active input range.

purelin('fullderiv') returns 1 or 0, depending on whether dA_dN is
S-by-S-by-Q or S-by-Q.

purelin('fpnames') returns the names of the function parameters.

purelin('fpdefaults') returns the default function parameters.

1-290

purelin

Examples Here is the code to create a plot of the purelin transfer function.

n = -5:0.1:5;
a = purelin(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'purelin';

Algorithms a = purelin(n) = n

See Also sim | satlin | satlins

1-291

quant

Purpose Discretize values as multiples of quantity

Syntax quant(X,Q)

Description quant(X,Q) takes two inputs,

X Matrix, vector, or scalar

Q Minimum value

and returns values from X rounded to nearest multiple of Q.

Examples x = [1.333 4.756 -3.897];
y = quant(x,0.1)

1-292

radbas

Purpose Radial basis transfer function

Graph
and
Symbol

Syntax A = radbas(N,FP)

Description radbas is a neural transfer function. Transfer functions calculate a
layer’s output from its net input.

A = radbas(N,FP) takes one or two inputs,

N S-by-Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)

and returns A, an S-by-Q matrix of the radial basis function applied
to each element of N.

Examples Here you create a plot of the radbas transfer function.

n = -5:0.1:5;
a = radbas(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'radbas';

1-293

radbas

Algorithms a = radbas(n) = exp(-n^2)

See Also sim | radbasn | tribas

1-294

radbasn

Purpose Normalized radial basis transfer function

Graph
and
Symbol

Syntax A = radbasn(N,FP)

Description radbasn is a neural transfer function. Transfer functions calculate a
layer’s output from its net input. This function is equivalent to radbas,
except that output vectors are normalized by dividing by the sum of
the pre-normalized values.

A = radbasn(N,FP) takes one or two inputs,

N S-by-Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)

and returns A, an S-by-Q matrix of the radial basis function applied
to each element of N.

Examples Here six random 3-element vectors are passed through the radial basis
transform and normalized.

n = rand(3,6)
a = radbasn(n)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'radbasn';

1-295

radbasn

Algorithms a = radbasn(n) = exp(-n^2) / sum(exp(-n^2))

See Also sim | radbas | tribas

1-296

randnc

Purpose Normalized column weight initialization function

Syntax W = randnc(S,PR)

Description randnc is a weight initialization function.

W = randnc(S,PR) takes two inputs,

S Number of rows (neurons)

PR R-by-2 matrix of input value ranges = [Pmin Pmax]

and returns an S-by-R random matrix with normalized columns.

You can also call this in the form randnc(S,R).

Examples A random matrix of four normalized three-element columns is
generated:

M = randnc(3,4)
M =

-0.6007 -0.4715 -0.2724 0.5596
-0.7628 -0.6967 -0.9172 0.7819
-0.2395 0.5406 -0.2907 0.2747

See Also randnr

1-297

randnr

Purpose Normalized row weight initialization function

Syntax W = randnr(S,PR)

Description randnr is a weight initialization function.

W = randnr(S,PR) takes two inputs,

S Number of rows (neurons)

PR R-by-2 matrix of input value ranges = [Pmin Pmax]

and returns an S-by-R random matrix with normalized rows.

You can also call this in the form randnr(S,R).

Examples A matrix of three normalized four-element rows is generated:

M = randnr(3,4)
M =

0.9713 0.0800 -0.1838 -0.1282
0.8228 0.0338 0.1797 0.5381

-0.3042 -0.5725 0.5436 0.5331

See Also randnc

1-298

rands

Purpose Symmetric random weight/bias initialization function

Syntax W = rands(S,PR)
M = rands(S,R)
v = rands(S)

Description rands is a weight/bias initialization function.

W = rands(S,PR) takes

S Number of neurons

PR R-by-2 matrix of R input ranges

and returns an S-by-R weight matrix of random values between –1 and 1.

M = rands(S,R) returns an S-by-R matrix of random values. v =
rands(S) returns an S-by-1 vector of random values.

Examples Here, three sets of random values are generated with rands.

rands(4,[0 1; -2 2])
rands(4)
rands(2,3)

Network
Use

To prepare the weights and the bias of layer i of a custom network to
be initialized with rands,

1 Set net.initFcn to 'initlay'. (net.initParam automatically
becomes initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to 'rands'.

4 Set each net.layerWeights{i,j}.initFcn to 'rands'.

5 Set each net.biases{i}.initFcn to 'rands'.

1-299

rands

To initialize the network, call init.

See Also randsmall | randnr | randnc | initwb | initlay | init

1-300

randsmall

Purpose Small random weight/bias initialization function

Syntax W = randsmall(S,PR)
M = rands(S,R)
v = rands(S)

Description randsmall is a weight/bias initialization function.

W = randsmall(S,PR) takes

S Number of neurons

PR R-by-2 matrix of R input ranges

and returns an S-by-R weight matrix of small random values between
–0.1 and 0.1.

M = rands(S,R) returns an S-by-R matrix of random values. v =
rands(S) returns an S-by-1 vector of random values.

Examples Here three sets of random values are generated with rands.

randsmall(4,[0 1; -2 2])
randsmall(4)
randsmall(2,3)

Network
Use

To prepare the weights and the bias of layer i of a custom network to
be initialized with rands,

1 Set net.initFcn to 'initlay'. (net.initParam automatically
becomes initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to 'randsmall'.

4 Set each net.layerWeights{i,j}.initFcn to 'randsmall'.

1-301

randsmall

5 Set each net.biases{i}.initFcn to 'randsmall'.

To initialize the network, call init.

See Also rands | randnr | randnc | initwb | initlay | init

1-302

randtop

Purpose Random layer topology function

Syntax pos = randtop(dim1,dim2,...,dimN)

Description randtop calculates the neuron positions for layers whose neurons are
arranged in an N-dimensional random pattern.

pos = randtop(dim1,dim2,...,dimN) takes N arguments,

dimi Length of layer in dimension i

and returns an N-by-S matrix of N coordinate vectors, where S is the
product of dim1*dim2*...*dimN.

Examples This code creates and displays a two-dimensional layer with neurons
arranged in a random pattern.

pos = randtop(8,5);
net = selforgmap([8 5],'topologyFcn','randtop');
plotsomtop(net)

See Also gridtop | hextop | tritop

1-303

regression

Purpose Linear regression

Syntax [r,m,b] = regression(t,y)
[r,m,b] = regression(t,y,'one')

Description [r,m,b] = regression(t,y) takes these arguments,

t Target matrix or cell array data with a total of
N matrix rows

y Output matrix or cell array data of the same size

and returns these outputs,

r Regression values for each of the N matrix rows

m Slope of regression fit for each of the N matrix
rows

b Offset of regression fit for each of the N matrix
rows

[r,m,b] = regression(t,y,'one') combines all matrix rows before
regressing, returning single scalar regression, slope and offset values.

Examples Here a feedforward network is trained and regression performed on its
targets and outputs.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
[r,m,b] = regression(t,y)
plotregression(t,y)

See Also plotregression | confusion

1-304

removeconstantrows

Purpose Process matrices by removing rows with constant values

Syntax [Y,PS] = removeconstantrows(X,max_range)
[Y,PS] = removeconstantrows(X,FP)
Y = removeconstantrows('apply',X,PS)
X = removeconstantrows('reverse',Y,PS)

Description removeconstantrows processes matrices by removing rows with
constant values.

[Y,PS] = removeconstantrows(X,max_range) takes X and an optional
parameter,

X Single N-by-Q matrix or a 1-by-TS row cell array
of N-by-Q matrices

max_range Maximum range of values for row to be removed
(default is 0)

and returns

Y Each M-by-Q matrix with N - M rows deleted
(optional)

PS Process settings that allow consistent processing
of values

[Y,PS] = removeconstantrows(X,FP) takes parameters as a struct:
FP.max_range.

Y = removeconstantrows('apply',X,PS) returns Y, given X and
settings PS.

X = removeconstantrows('reverse',Y,PS) returns X, given Y and
settings PS.

1-305

removeconstantrows

Examples Here is how to format a matrix so that the rows with constant values
are removed.

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,PS] = removeconstantrows(x1)

Next, apply the same processing settings to new values.

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = removeconstantrows('apply',x2,PS)

Reverse the processing of y1 to get x1 again.

x1_again = removeconstantrows('reverse',y1,PS)

See Also fixunknowns | mapminmax | mapstd | processpca

1-306

removedelay

Purpose Remove delay to neural network’s response

Syntax net = removedelay(net,n)

Description net = removedelay(net,n) takes these arguments,

net Neural network

n Number of delays

and returns the network with input delay connections decreased, and
output feedback delays increased, by the specified number of delays n.
The result is a network which behaves identically, except that outputs
are produced n timesteps later.

If the number of delays n is not specified, a default of one delay is used.

Examples Here a time delay network is created, trained and simulated in its
original form on an input time series X and target series T. It is then with
a delay removed and then added back. These first and third outputs
will be identical, while the second will be shifted by one timestep.

[X,T] = simpleseries_dataset;
net = timedelaynet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi);
y1 = net(Xs)
net2 = removedelay(net);
[Xs,Xi,Ai,Ts] = preparets(net2,X,T);
y2 = net2(Xs,Xi)
net3 = adddelay(net2)
[Xs,Xi,Ai,Ts] = preparets(net3,X,T);
y3 = net3(Xs,Xi)

See Also adddelay | closeloop | openloop

1-307

removerows

Purpose Process matrices by removing rows with specified indices

Syntax [Y,PS] = removerows(X,'ind',ind)
[Y,PS] = removerows(X,FP)
Y = removerows('apply',X,PS)
X = removerows('reverse',Y,PS)
dx_dy = removerows('dx',X,Y,PS)
dx_dy = removerows('dx',X,[],PS)
name = removerows('name')
fp = removerows('pdefaults')
names = removerows('pdesc')
removerows('pcheck',FP)

Description removerows processes matrices by removing rows with the specified
indices.

[Y,PS] = removerows(X,'ind',ind) takes X and an optional
parameter,

X N-by-Q matrix or a 1-by-TS row cell array of
N-by-Q matrices

ind Vector of row indices to remove (default is [])

and returns

Y Each M-by-Q matrix, where M == N-length(ind)
(optional)

PS Process settings that allow consistent processing
of values

[Y,PS] = removerows(X,FP) takes parameters as a struct: FP.ind.

Y = removerows('apply',X,PS) returns Y, given X and settings PS.

X = removerows('reverse',Y,PS) returns X, given Y and settings PS.

1-308

removerows

dx_dy = removerows('dx',X,Y,PS) returns the M-by-N-by-Q derivative
of Y with respect to X.

dx_dy = removerows('dx',X,[],PS) returns the derivative, less
efficiently.

name = removerows('name') returns the name of this process method.

fp = removerows('pdefaults') returns the default process parameter
structure.

names = removerows('pdesc') returns the process parameter
descriptions.

removerows('pcheck',FP) throws an error if any parameter is illegal.

Examples Here is how to format a matrix so that rows 2 and 4 are removed:

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,ps] = removerows(x1,'ind',[2 4])

Next, apply the same processing settings to new values.

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = removerows('apply',x2,ps)

Reverse the processing of y1 to get x1 again.

x1_again = removerows('reverse',y1,ps)

Algorithms In the reverse calculation, the unknown values of replaced rows are
represented with NaN values.

See Also fixunknowns | mapminmax | mapstd | processpca

1-309

revert

Purpose Change network weights and biases to previous initialization values

Syntax net = revert (net)

Description net = revert (net) returns neural network net with weight and bias
values restored to the values generated the last time the network was
initialized.

If the network is altered so that it has different weight and bias
connections or different input or layer sizes, then revert cannot set the
weights and biases to their previous values and they are set to zeros
instead.

Examples Here a perceptron is created with input size set to 2 and number of
neurons to 1.

net = perceptron;
net.inputs{1}.size = 2;
net.layers{1}.size = 1;

The initial network has weights and biases with zero values.

net.iw{1,1}, net.b{1}

Change these values as follows:

net.iw{1,1} = [1 2];
net.b{1} = 5;
net.iw{1,1}, net.b{1}

You can recover the network’s initial values as follows:

net = revert(net);
net.iw{1,1}, net.b{1}

See Also init | sim | adapt | train

1-310

roc

Purpose Receiver operating characteristic

Syntax [tpr,fpr,thresholds] = roc(targets,outputs)

Description The receiver operating characteristic is a metric used to check the
quality of classifiers. For each class of a classifier, roc applies threshold
values across the interval [0,1] to outputs. For each threshold, two
values are calculated, the True Positive Ratio (the number of outputs
greater or equal to the threshold, divided by the number of one targets),
and the False Positive Ratio (the number of outputs less than the
threshold, divided by the number of zero targets).

You can visualize the results of this function with plotroc.

[tpr,fpr,thresholds] = roc(targets,outputs) takes these
arguments:

targets S-by-Q matrix, where each column vector
contains a single 1 value, with all other elements
0. The index of the 1 indicates which of S
categories that vector represents.

outputs S-by-Q matrix, where each column contains
values in the range [0,1]. The index of the
largest element in the column indicates which of
S categories that vector presents. Alternately,
1-by-Q vector, where values greater or equal to
0.5 indicate class membership, and values below
0.5, nonmembership.

and returns these values:

1-311

roc

tpr 1-by-S cell array of 1-by-N true-positive/positive
ratios.

fpr 1-by-S cell array of 1-by-N false-positive/negative
ratios.

thresholds 1-by-S cell array of 1-by-N thresholds over
interval [0,1].

roc(targets,outputs) takes these arguments:

targets 1-by-Q matrix of Boolean values indicating class
membership.

outputs S-by-Q matrix, of values in [0,1] interval, where
values greater than or equal to 0.5 indicate class
membership.

and returns these values:

tpr 1-by-N vector of true-positive/positive ratios.

fpr 1-by-N vector of false-positive/negative ratios.

thresholds 1-by-N vector of thresholds over interval [0,1].

Examples load iris_dataset
net = patternnet(20);
net = train(net,irisInputs,irisTargets);
irisOutputs = sim(net,irisInputs);
[tpr,fpr,thresholds] = roc(irisTargets,irisOutputs)

See Also plotroc | confusion

1-312

sae

Purpose Sum absolute error performance function

Syntax perf = sae(net,t,y,ew)
[...] = sae(...,'regularization',regularization)
[...] = sae(...,'normalization',normalization)
[...] = sae(...,'squaredWeighting',squaredWeighting)
[...] = sae(...,FP)

Description sae is a network performance function. It measures performance
according to the sum of squared errors.

perf = sae(net,t,y,ew) takes these input arguments and optional
function parameters,

net Neural network

t Matrix or cell array of target vectors

y Matrix or cell array of output vectors

ew Error weights (default = {1})

and returns the sum squared error.

This function has three optional function parameters that can be
defined with parameter name/pair arguments, or as a structure FP
argument with fields having the parameter name and assigned the
parameter values:

[...] = sae(...,'regularization',regularization)

[...] = sae(...,'normalization',normalization)

[...] = sae(...,'squaredWeighting',squaredWeighting)

[...] = sae(...,FP)

• regularization — can be set to any value between the default of
0 and 1. The greater the regularization value, the more squared
weights and biases are taken into account in the performance
calculation.

1-313

sae

• normalization — can be set to the default 'absolute', or
'normalized' (which normalizes errors to the [+2 -2] range
consistent with normalized output and target ranges of [-1 1]) or
'percent' (which normalizes errors to the range [-1 +1]).

• squaredWeighting — can be set to the default false, for applying
error weights to absolute errors, or false for applying error weights to
the squared errors before squaring.

Examples Here a network is trained to fit a simple data set and its performance
calculated

[x,t] = simplefit_dataset;
net = fitnet(10,'trainscg');
net.performFcn = 'sae';
net = train(net,x,t)
y = net(x)
e = t-y
perf = sae(net,t,y)

Network
Use

To prepare a custom network to be trained with sae, set
net.performFcn to 'sae'. This automatically sets net.performParam
to the default function parameters.

Then calling train, adapt or perform will result in sae being used
to calculate performance.

1-314

satlin

Purpose Saturating linear transfer function

Graph
and
Symbol

Syntax A = satlin(N,FP)

Description satlin is a neural transfer function. Transfer functions calculate a
layer’s output from its net input.

A = satlin(N,FP) takes one input,

N S-by-Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N’s elements clipped to [0, 1].

info = satlin('code') returns useful information for each supported
code string:

satlin('name') returns the name of this function.

satlin('output',FP) returns the [min max] output range.

satlin('active',FP) returns the [min max] active input range.

satlin('fullderiv') returns 1 or 0, depending on whether dA_dN is
S-by-S-by-Q or S-by-Q.

satlin('fpnames') returns the names of the function parameters.

satlin('fpdefaults') returns the default function parameters.

1-315

satlin

Examples Here is the code to create a plot of the satlin transfer function.

n = -5:0.1:5;
a = satlin(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'satlin';

Algorithms a = satlin(n) = 0, if n <= 0
n, if 0 <= n <= 1
1, if 1 <= n

See Also sim | poslin | satlins | purelin

1-316

satlins

Purpose Symmetric saturating linear transfer function

Graph
and
Symbol

Syntax A = satlins(N,FP)

Description satlins is a neural transfer function. Transfer functions calculate a
layer’s output from its net input.

A = satlins(N,FP) takes N and an optional argument,

N S-by-Q matrix of net input (column) vectors

FP Struct of function parameters (optional, ignored)

and returns A, the S-by-Q matrix of N’s elements clipped to [-1, 1].

info = satlins('code') returns useful information for each
supported code string:

satlins('name') returns the name of this function.

satlins('output',FP) returns the [min max] output range.

satlins('active',FP) returns the [min max] active input range.

satlins('fullderiv') returns 1 or 0, depending on whether dA_dN is
S-by-S-by-Q or S-by-Q.

satlins('fpnames') returns the names of the function parameters.

satlins('fpdefaults') returns the default function parameters.

1-317

satlins

Examples Here is the code to create a plot of the satlins transfer function.

n = -5:0.1:5;
a = satlins(n);
plot(n,a)

Algorithms satlins(n) = -1, if n <= -1
n, if -1 <= n <= 1
1, if 1 <= n

See Also sim | satlin | poslin | purelin

1-318

scalprod

Purpose Scalar product weight function

Syntax Z = scalprod(W,P)
dim = scalprod('size',S,R,FP)
dw = scalprod('dw',W,P,Z,FP)

Description scalprod is the scalar product weight function. Weight functions apply
weights to an input to get weighted inputs.

Z = scalprod(W,P) takes these inputs,

W 1-by-1 weight matrix

P R-by-Q matrix of Q input (column) vectors

and returns the R-by-Q scalar product of W and P defined by Z = w*P.

dim = scalprod('size',S,R,FP) takes the layer dimension S, input
dimension R, and function parameters, and returns the weight size
[1-by-1].

dw = scalprod('dw',W,P,Z,FP) returns the derivative of Z with
respect to W.

Examples Here you define a random weight matrix W and input vector P and
calculate the corresponding weighted input Z.

W = rand(1,1);
P = rand(3,1);
Z = scalprod(W,P)

Network
Use

To change a network so an input weight uses scalprod, set
net.inputWeight{i,j}.weightFcn to 'scalprod'.

For a layer weight, set net.layerWeight{i,j}.weightFcn to
'scalprod'.

In either case, call sim to simulate the network with scalprod.

1-319

scalprod

See help newp and help newlin for simulation examples.

See Also dotprod | sim | dist | negdist | normprod

1-320

selforgmap

Purpose Self-organizing map

Syntax selforgmap(dimensions,coverSteps,initNeighbor,topologyFcn,
distanceFcn)

Description Self-organizing maps learn to cluster data based on similarity, topology,
with a preference (but no guarantee) of assigning the same number
of instances to each class.

Self-organizing maps are used both to cluster data and to reduce the
dimensionality of data. They are inspired by the sensory and motor
mappings in the mammal brain, which also appear to automatically
organizing information topologically.

selforgmap(dimensions,coverSteps,initNeighbor,topologyFcn,distanceFcn)
takes these arguments,

dimensions Row vector of dimension sizes (default = [8
8])

coverSteps Number of training steps for initial covering
of the input space (default = 100)

initNeighbor Initial neighborhood size (default = 3)

topologyFcn Layer topology function (default = 'hextop')

distanceFcn Neuron distance function (default =
'linkdist')

and returns a self-organizing map.

Examples Here a self-organizing map is used to cluster a simple set of data.

x = simplecluster_dataset;
net = selforgmap([8 8])
net = train(net,x);
view(net)
y = net(x);

1-321

selforgmap

classes = vec2ind(y)

See Also lvqnet | competlayer | nctool

1-322

separatewb

Purpose Separate biases and weight values from weight/bias vector

Syntax [b,IW,LW] = separatewb(net,wb)

Description [b,IW,LW] = separatewb(net,wb) takes two arguments,

net Neural network

wb Weight/bias vector

and returns

b Cell array of bias vectors

IW Cell array of input weight matrices

LW Cell array of layer weight matrices

Examples Here a feedforward network is trained to fit some data, then its bias and
weight values formed into a vector. The single vector is then redivided
into the original biases and weights.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
wb = formwb(net,net.b,net.iw,net.lw)
[b,iw,lw] = separatewb(net,wb)

See Also getwb | formwb | setwb

1-323

seq2con

Purpose Convert sequential vectors to concurrent vectors

Syntax b = seq2con(s)

Description Neural Network Toolbox software represents batches of vectors with a
matrix, and sequences of vectors with multiple columns of a cell array.

seq2con and con2seq allow concurrent vectors to be converted to
sequential vectors, and back again.

b = seq2con(s) takes one input,

s N-by-TS cell array of matrices with M columns

and returns

b N-by-1 cell array of matrices with M*TS columns

Examples Here three sequential values are converted to concurrent values.

p1 = {1 4 2}
p2 = seq2con(p1)

Here two sequences of vectors over three time steps are converted to
concurrent vectors.

p1 = {[1; 1] [5; 4] [1; 2]; [3; 9] [4; 1] [9; 8]}
p2 = seq2con(p1)

See Also con2seq | concur

1-324

setelements

Purpose Set neural network data elements

Syntax setelements(x,i,v)

Description setelements(x,i,v) takes these arguments,

x Neural network matrix or cell array data

i Indices

v Neural network data to store into x

and returns the original data x with the data v stored in the elements
indicated by the indices i.

Examples This code sets elements 1 and 3 of matrix data:

x = [1 2; 3 4; 7 4]
v = [10 11; 12 13];
y = setelements(x,[1 3],v)

This code sets elements 1 and 3 of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20 21 22; 23 24 25] [26 27 28; 29 30 31]}
y = setelements(x,[1 3],v)

See Also nndata | numelements | getelements | catelements | setsamples |
setsignals | settimesteps

1-325

setsamples

Purpose Set neural network data samples

Syntax setsamples(x,i,v)

Description setsamples(x,i,v) takes these arguments,

x Neural network matrix or cell array data

i Indices

v Neural network data to store into x

and returns the original data x with the data v stored in the samples
indicated by the indices i.

Examples This code sets samples 1 and 3 of matrix data:

x = [1 2 3; 4 7 4]
v = [10 11; 12 13];
y = setsamples(x,[1 3],v)

This code sets samples 1 and 3 of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20 21; 22 23] [24 25; 26 27]; [28 29] [30 31]}
y = setsamples(x,[1 3],v)

See Also nndata | numsamples | getsamples | catsamples | setelements |
setsignals | settimesteps

1-326

setsignals

Purpose Set neural network data signals

Syntax setsignals(x,i,v)

Description setsignals(x,i,v) takes these arguments,

x Neural network matrix or cell array data

i Indices

v Neural network data to store into x

and returns the original data x with the data v stored in the signals
indicated by the indices i.

Examples This code sets signal 2 of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20:22] [23:25]}
y = setsignals(x,2,v)

See Also nndata | numsignals | getsignals | catsignals | setelements |
setsamples | settimesteps

1-327

setsiminit

Purpose Set neural network Simulink block initial conditions

Syntax setsiminit(sysName,netName,net,xi,ai,Q)

Description setsiminit(sysName,netName,net,xi,ai,Q) takes these arguments,

sysName The name of the Simulink system containing the
neural network block

netName The name of the Simulink neural network block

net The original neural network

xi Initial input delay states

ai Initial layer delay states

Q Sample number (default is 1)

and sets the Simulink neural network blocks initial conditions as
specified.

Examples Here a NARX network is designed. The NARX network has a standard
input and an open loop feedback output to an associated feedback input.

[x,t] = simplenarx_dataset;
net = narxnet(1:2,1:2,20);
view(net)
[xs,xi,ai,ts] = preparets(net,x,{},t);
net = train(net,xs,ts,xi,ai);
y = net(xs,xi,ai);

Now the network is converted to closed loop, and the data is reformatted
to simulate the network’s closed loop response.

net = closeloop(net);
view(net)
[xs,xi,ai,ts] = preparets(net,x,{},t);
y = net(xs,xi,ai);

1-328

setsiminit

Here the network is converted to a Simulink system with workspace
input and output ports. Its delay states are initialized, inputs X1
defined in the workspace, and it is ready to be simulated in Simulink.

[sysName,netName] = gensim(net,'InputMode','Workspace',...
'OutputMode','WorkSpace','SolverMode','Discrete');

setsiminit(sysName,netName,net,xi,ai,1);
x1 = nndata2sim(x,1,1);

Finally the initial input and layer delays are obtained from the Simulink
model. (They will be identical to the values set with setsiminit.)

[xi,ai] = getsiminit(sysName,netName,net);

See Also gensim | getsiminit | nndata2sim | sim2nndata

1-329

settimesteps

Purpose Set neural network data timesteps

Syntax settimesteps(x,i,v)

Description settimesteps(x,i,v) takes these arguments,

x Neural network matrix or cell array data

i Indices

v Neural network data to store into x

and returns the original data x with the data v stored in the timesteps
indicated by the indices i.

Examples This code sets timestep 2 of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20:22; 23:25]; [25:27]}
y = settimesteps(x,2,v)

See Also nndata | numtimesteps | gettimesteps | cattimesteps |
setelements | setsamples | setsignals

1-330

setwb

Purpose Set all network weight and bias values with single vector

Syntax net = setwb(net,wb)

Description This function sets a network’s weight and biases to a vector of values.

net = setwb(net,wb) takes the following inputs:

net Neural network

wb Vector of weight and bias values

Examples Here you create a network with a two-element input and one layer of
three neurons.

net = feedforwardnet(3);
net = configure(net,[0;0],0);

The network has six weights (3 neurons * 2 input elements) and three
biases (3 neurons) for a total of nine weight and bias values. You can
set them to random values as follows:

net = setwb(net,rand(9,1));

You can then view the weight and bias values as follows:

net.iw{1,1}
net.b{1}

See Also getwb | formwb | separatewb

1-331

sim

Purpose Simulate neural network

Syntax [Y,Xf,Af] = sim(net,X,Xi,Ai,T)
[Y,Xf,Af] = sim(net,{Q TS},Xi,Ai)
[Y,...] = sim(net,...,'useParallel',...)
[Y,...] = sim(net,...,'useGPU',...)
[Y,...] = sim(net,...,'showResources',...)
[Ycomposite,...] = sim(net,Xcomposite,...)
[Ygpu,...] = sim(net,Xgpu,...)

To Get
Help

Type help network/sim.

Description sim simulates neural networks.

[Y,Xf,Af] = sim(net,X,Xi,Ai,T) takes

net Network

X Network inputs

Xi Initial input delay conditions (default = zeros)

Ai Initial layer delay conditions (default = zeros)

T Network targets (default = zeros)

and returns

Y Network outputs

Xf Final input delay conditions

Xf Final layer delay conditions

sim is usually called implicitly by calling the neural network as a
function. For instance, these two expressions return the same result:

1-332

sim

y = sim(net,x,xi,ai)
y = net(x,xi,ai)

Note that arguments Xi, Ai, Xf, and Af are optional and need only be
used for networks that have input or layer delays.

The signal arguments can have two formats: cell array or matrix.

The cell array format is easiest to describe. It is most convenient for
networks with multiple inputs and outputs, and allows sequences of
inputs to be presented:

X Ni-by-TS cell
array

Each element X{i,ts} is an Ri-by-Q
matrix.

Xi Ni-by-ID cell
array

Each element Xi{i,k} is an Ri-by-Q
matrix.

Ai Nl-by-LD cell
array

Each element Ai{i,k} is an Si-by-Q
matrix.

T No-by-TS cell
array

Each element X{i,ts} is a Ui-by-Q
matrix.

Y No-by-TS cell
array

Each element Y{i,ts} is a Ui-by-Q
matrix.

Xf Ni-by-ID cell
array

Each element Xf{i,k} is an Ri-by-Q
matrix.

Af Nl-by-LD cell
array

Each element Af{i,k} is an Si-by-Q
matrix.

where

Ni = net.numInputs

Nl = net.numLayers

No = net.numOutputs

D = net.numInputDelays

1-333

sim

LD = net.numLayerDelays

TS = Number of time steps

Q = Batch size

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Ui = net.outputs{i}.size

The columns of Xi, Ai, Xf, and Af are ordered from oldest delay
condition to most recent:

Xi{i,k} = Input i at time ts = k - ID

Xf{i,k} = Input i at time ts = TS + k - ID

Ai{i,k} = Layer output i at time ts = k - LD

Af{i,k} = Layer output i at time ts = TS + k - LD

The matrix format can be used if only one time step is to be simulated
(TS = 1). It is convenient for networks with only one input and output,
but can also be used with networks that have more.

Each matrix argument is found by storing the elements of the
corresponding cell array argument in a single matrix:

X (sum of Ri)-by-Q matrix

Xi (sum of Ri)-by-(ID*Q) matrix

Ai (sum of Si)-by-(LD*Q) matrix

T (sum of Ui)-by-Q matrix

Y (sum of Ui)-by-Q matrix

1-334

sim

Xf (sum of Ri)-by-(ID*Q) matrix

Af (sum of Si)-by-(LD*Q) matrix

[Y,Xf,Af] = sim(net,{Q TS},Xi,Ai) is used for networks that do not
have an input, such as Hopfield networks, when cell array notation
is used.

[Y,...] = sim(net,...,'useParallel',...),
[Y,...] = sim(net,...,'useGPU',...), or [Y,...] =
sim(net,...,'showResources',...) (or the network called as a
function) accepts optional name/value pair arguments to control how
calculations are performed. Two of these options allow training to
happen faster or on larger datasets using parallel workers or GPU
devices if Parallel Computing Toolbox is available. These are the
optional name/value pairs:

'useParallel','no'Calculations occur on normal MATLAB thread. This
is the default 'useParallel' setting.

'useParallel','yes'Calculations occur on parallel workers if a MATLAB
pool is open. Otherwise calculations occur on the
normal MATLAB thread.

'useGPU','no' Calculations occur on the CPU. This is the default
’useGPU’ setting.

'useGPU','yes'Calculations occur on the current gpuDevice if it is
a supported GPU (See Parallel Computing Toolbox
for GPU requirements.) If the current gpuDevice is
not supported, calculations remain on the CPU. If
'useParallel' is also 'yes' and a MATLAB pool
is open, then each worker with a unique GPU uses
that GPU, other workers run calculations on their
respective CPU cores.

1-335

sim

'useGPU','only'If no MATLAB pool is open, then this setting is the
same as 'yes'. If a MATLAB pool is open, then only
workers with unique GPUs are used. However, if a
MATLAB pool is open, but no supported GPUs are
available, then calculations revert to performing on
all worker CPUs.

'showResources','no'Do not display computing resources used at the
command line. This is the default setting.

'showResources','yes'Show at the command line a summary of the
computing resources actually used. The actual
resources may differ from the requested resources,
if parallel or GPU computing is requested but a
MATLAB pool is not open or a supported GPU is
not available. When parallel workers are used, each
worker’s computation mode is described, including
workers in the pool that are not used.

[Ycomposite,...] = sim(net,Xcomposite,...) takes Composite
data and returns Composite results. If Composite data is used, then
'useParallel' is automatically set to 'yes'.

[Ygpu,...] = sim(net,Xgpu,...) takes gpuArray data and
returns gpuArray results. If gpuArray data is used, then 'useGPU' is
automatically set to 'yes'.

Examples In the following examples, the sim function is called implicitly by calling
the neural network object (net) as a function.

Simulate Feedforward Networks

This example loads a dataset that maps neighborhood characteristics,
x, to median house prices, t. A feedforward network with 10 neurons is
created and trained on that data, then simulated.

[x,t] = house_dataset;
net = feedforwardnet(10);
net = train(net,x,t);

1-336

sim

y = net(x);

Simulate NARX Time Series Networks

This example trains an open-loop nonlinear-autoregressive network
with external input, to model a levitated magnet system defined by a
control current x and the magnet’s vertical position response t, then
simulates the network. The function preparets prepares the data
before training and simulation. It creates the open-loop network’s
combined inputs xo, which contains both the external input x and
previous values of position t. It also prepares the delay states xi.

[x,t] = maglev_dataset;
net = narxnet(10);
[xo,xi,~,to] = preparets(net,x,{},t);
net = train(net,xo,to,xi);
y = net(xo,xi)

This same system can also be simulated in closed-loop form.

netc = closeloop(net);
view(netc)
[xc,xi,ai,tc] = preparets(netc,x,{},t);
yc = netc(xc,xi,ai);

Simulate in Parallel on a MATLAB Pool

Parallel Computing Toolbox allows Neural Network Toolbox to simulate
and train networks faster and on larger datasets than can fit on one
PC. Here training and simulation happens across parallel MATLAB
workers.

matlabpool open
[X,T] = vinyl_dataset;
net = feedforwardnet(10);
net = train(net,X,T,'useParallel','yes','showResources','yes');
Y = net(X,'useParallel','yes');

1-337

sim

Simulate on GPUs

Use Composite values to distribute the data manually, and get back the
results as a Composite value. If the data is loaded as it is distributed,
then while each piece of the dataset must fit in RAM, the entire dataset
is limited only by the total RAM of all the workers.

Xc = Composite;
for i=1:numel(Xc)

Xc{i} = X+rand(size(X))*0.1; % Use real data instead of random
end
Yc = net(Xc,'showResources','yes');

Networks can be simulated using the current GPU device, if it is
supported by Parallel Computing Toolbox.

gpuDevice % Check if there is a supported GPU
Y = net(X,'useGPU','yes','showResources','yes');

To put the data on a GPU manually, and get the results on the GPU:

Xgpu = gpuArray(X);
Ygpu = net(Xgpu,'showResources','yes');
Y = gather(Ygpu);

To run in parallel, with workers associated with unique GPUs taking
advantage of that hardware, while the rest of the workers use CPUs:

Y = net(X,'useParallel','yes','useGPU','yes','showResources','yes');

Using only workers with unique GPUs might result in higher speeds, as
CPU workers might not keep up.

Y = net(X,'useParallel','yes','useGPU','only','showResources','yes');

Algorithms sim uses these properties to simulate a network net.

net.numInputs, net.numLayers
net.outputConnect, net.biasConnect
net.inputConnect, net.layerConnect

1-338

sim

These properties determine the network’s weight and bias values and
the number of delays associated with each weight:

net.IW{i,j}
net.LW{i,j}
net.b{i}
net.inputWeights{i,j}.delays
net.layerWeights{i,j}.delays

These function properties indicate how sim applies weight and bias
values to inputs to get each layer’s output:

net.inputWeights{i,j}.weightFcn
net.layerWeights{i,j}.weightFcn
net.layers{i}.netInputFcn
net.layers{i}.transferFcn

See Also init | adapt | train | revert

1-339

sim2nndata

Purpose Convert Simulink time series to neural network data

Syntax sim2nndata(x)

Description sim2nndata(x) takes either a column vector of values or a Simulink
time series structure and converts it to a neural network data time
series.

Examples Here a random Simulink 20-step time series is created and converted.

simts = rands(20,1);
nnts = sim2nndata(simts)

Here a similar time series is defined with a Simulink structure and
converted.

simts.time = 0:19
simts.signals.values = rands(20,1);
simts.dimensions = 1;
nnts = sim2nndata(simts)

See Also nndata | nndata2sim

1-340

softmax

Purpose Soft max transfer function

Graph
and
Symbol

Syntax A = softmax(N,FP)

Description softmax is a neural transfer function. Transfer functions calculate a
layer’s output from its net input.

A = softmax(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of the softmax competitive function
applied to each column of N.

info = softmax('code') returns information about this function.
The following codes are defined:

softmax('name') returns the name of this function.

softmax('output',FP) returns the [min max] output range.

softmax('active',FP) returns the [min max] active input range.

softmax('fullderiv') returns 1 or 0, depending on whether dA_dN is
S-by-S-by-Q or S-by-Q.

softmax('fpnames') returns the names of the function parameters.

softmax('fpdefaults') returns the default function parameters.

1-341

softmax

Examples Here you define a net input vector N, calculate the output, and plot
both with bar graphs.

n = [0; 1; -0.5; 0.5];
a = softmax(n);
subplot(2,1,1), bar(n), ylabel('n')
subplot(2,1,2), bar(a), ylabel('a')

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'softmax';

Algorithms a = softmax(n) = exp(n)/sum(exp(n))

See Also sim | compet

1-342

srchbac

Purpose 1-D minimization using backtracking

Syntax [a,gX,perf,retcode,delta,tol] = srchbac(net,X,Pd,Tl,Ai,Q,TS,
dX,gX,perf,dperf,delta,TOL,ch_perf)

Description srchbac is a linear search routine. It searches in a given direction to
locate the minimum of the performance function in that direction. It
uses a technique called backtracking.

[a,gX,perf,retcode,delta,tol] =
srchbac(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,TOL,ch_perf)
takes these inputs,

net Neural network

X Vector containing current values of weights and
biases

Pd Delayed input vectors

Tl Layer target vectors

Ai Initial input delay conditions

Q Batch size

TS Time steps

dX Search direction vector

gX Gradient vector

perf Performance value at current X

dperf Slope of performance value at current X in direction
of dX

delta Initial step size

tol Tolerance on search

ch_perf Change in performance on previous step

1-343

srchbac

and returns

a Step size that minimizes performance

gX Gradient at new minimum point

perf Performance value at new minimum point

retcode Return code that has three elements. The
first two elements correspond to the number
of function evaluations in the two stages of
the search. The third element is a return
code. These have different meanings for
different search algorithms. Some might not
be used in this function.

0 Normal

1 Minimum step taken

2 Maximum step taken

3 Beta condition not met

delta New initial step size, based on the current
step size

tol New tolerance on search

Parameters used for the backstepping algorithm are

alpha Scale factor that determines sufficient reduction
in perf

beta Scale factor that determines sufficiently large
step size

low_lim Lower limit on change in step size

up_lim Upper limit on change in step size

maxstep Maximum step length

1-344

srchbac

minstep Minimum step length

scale_tol Parameter that relates the tolerance tol to the
initial step size delta, usually set to 20

The defaults for these parameters are set in the training function
that calls them. See traincgf, traincgb, traincgp, trainbfg, and
trainoss.

Dimensions for these variables are

Pd No-by-Ni-by-TS
cell array

Each element P{i,j,ts} is a
Dij-by-Q matrix.

Tl Nl-by-TS cell
array

Each element P{i,ts} is a
Vi-by-Q matrix.

V Nl-by-LD cell
array

Each element Ai{i,k} is an
Si-by-Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri *
length(net.inputWeights{i,j}.delays)

Examples Here is a problem consisting of inputs p and targets t to be solved with
a network.

1-345

srchbac

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

A two-layer feed-forward network is created. The network’s input
ranges from [0 to 10]. The first layer has two tansig neurons,
and the second layer has one logsig neuron. The traincgf network
training function and the srchbac search function are to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network

net.trainParam.searchFcn = 'srchbac';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network
Use

You can create a standard network that uses srchbac with newff,
newcf, or newelm.

To prepare a custom network to be trained with traincgf, using the
line search function srchbac,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to
traincgf’s default parameters.

2 Set net.trainParam.searchFcn to 'srchbac'.

The srchbac function can be used with any of the following training
functions: traincgf, traincgb, traincgp, trainbfg, trainoss.

1-346

srchbac

Algorithms srchbac locates the minimum of the performance function in the search
direction dX, using the backtracking algorithm described on page 126
and 328 of Dennis and Schnabel’s book, noted below.

References Dennis, J.E., and R.B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Englewood Cliffs, NJ,
Prentice-Hall, 1983

Definitions The backtracking search routine srchbac is best suited to use with
the quasi-Newton optimization algorithms. It begins with a step
multiplier of 1 and then backtracks until an acceptable reduction in
the performance is obtained. On the first step it uses the value of
performance at the current point and a step multiplier of 1. It also
uses the value of the derivative of performance at the current point to
obtain a quadratic approximation to the performance function along
the search direction. The minimum of the quadratic approximation
becomes a tentative optimum point (under certain conditions) and the
performance at this point is tested. If the performance is not sufficiently
reduced, a cubic interpolation is obtained and the minimum of the cubic
interpolation becomes the new tentative optimum point. This process is
continued until a sufficient reduction in the performance is obtained.

The backtracking algorithm is described in Dennis and Schnabel. It
is used as the default line search for the quasi-Newton algorithms,
although it might not be the best technique for all problems.

See Also srchcha | srchgol | srchhyb

1-347

srchbre

Purpose 1-D interval location using Brent’s method

Syntax [a,gX,perf,retcode,delta,tol] = srchbre(net,X,Pd,Tl,Ai,Q,TS,
dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchbre is a linear search routine. It searches in a given direction to
locate the minimum of the performance function in that direction. It
uses a technique called Brent’s technique.

[a,gX,perf,retcode,delta,tol] =
srchbre(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)
takes these inputs,

net Neural network

X Vector containing current values of weights and
biases

Pd Delayed input vectors

Tl Layer target vectors

Ai Initial input delay conditions

Q Batch size

TS Time steps

dX Search direction vector

gX Gradient vector

perf Performance value at current X

dperf Slope of performance value at current X in direction
of dX

delta Initial step size

tol Tolerance on search

ch_perf Change in performance on previous step

1-348

srchbre

and returns

a Step size that minimizes performance

gX Gradient at new minimum point

perf Performance value at new minimum point

retcode Return code that has three elements. The
first two elements correspond to the number
of function evaluations in the two stages of
the search. The third element is a return
code. These have different meanings for
different search algorithms. Some might not
be used in this function.

0 Normal

1 Minimum step taken

2 Maximum step taken

3 Beta condition not met

delta New initial step size, based on the current
step size

tol New tolerance on search

Parameters used for the Brent algorithm are

alpha Scale factor that determines sufficient reduction
in perf

beta Scale factor that determines sufficiently large
step size

bmax Largest step size

scale_tol Parameter that relates the tolerance tol to the
initial step size delta, usually set to 20

1-349

srchbre

The defaults for these parameters are set in the training function
that calls them. See traincgf, traincgb, traincgp, trainbfg, and
trainoss.

Dimensions for these variables are

Pd No-by-Ni-by-TS
cell array

Each element P{i,j,ts} is a
Dij-by-Q matrix.

Tl Nl-by-TS cell array Each element P{i,ts} is a
Vi-by-Q matrix.

Ai Nl-by-LD cell array Each element Ai{i,k} is an
Si-by-Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri *
length(net.inputWeights{i,j}.delays)

Examples Here is a problem consisting of inputs p and targets t to be solved with
a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

A two-layer feed-forward network is created. The network’s input
ranges from [0 to 10]. The first layer has two tansig neurons,

1-350

srchbre

and the second layer has one logsig neuron. The traincgf network
training function and the srchbac search function are to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network

net.trainParam.searchFcn = 'srchbre';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network
Use

You can create a standard network that uses srchbre with newff,
newcf, or newelm. To prepare a custom network to be trained with
traincgf, using the line search function srchbre,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to
traincgf’s default parameters.

2 Set net.trainParam.searchFcn to 'srchbre'.

The srchbre function can be used with any of the following training
functions: traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithms srchbre brackets the minimum of the performance function in the
search direction dX, using Brent’s algorithm, described on page 46 of
Scales (see reference below). It is a hybrid algorithm based on the
golden section search and the quadratic approximation.

References Scales, L.E., Introduction to Non-Linear Optimization, New York,
Springer-Verlag, 1985

1-351

srchbre

Definitions Brent’s search is a linear search that is a hybrid of the golden section
search and a quadratic interpolation. Function comparison methods,
like the golden section search, have a first-order rate of convergence,
while polynomial interpolation methods have an asymptotic rate that
is faster than superlinear. On the other hand, the rate of convergence
for the golden section search starts when the algorithm is initialized,
whereas the asymptotic behavior for the polynomial interpolation
methods can take many iterations to become apparent. Brent’s search
attempts to combine the best features of both approaches.

For Brent’s search, you begin with the same interval of uncertainty
used with the golden section search, but some additional points are
computed. A quadratic function is then fitted to these points and the
minimum of the quadratic function is computed. If this minimum is
within the appropriate interval of uncertainty, it is used in the next
stage of the search and a new quadratic approximation is performed. If
the minimum falls outside the known interval of uncertainty, then a
step of the golden section search is performed.

See [Bren73] for a complete description of this algorithm. This
algorithm has the advantage that it does not require computation of the
derivative. The derivative computation requires a backpropagation
through the network, which involves more computation than a
forward pass. However, the algorithm can require more performance
evaluations than algorithms that use derivative information.

See Also srchbac | srchcha | srchgol | srchhyb

1-352

srchcha

Purpose 1-D minimization using Charalambous’ method

Syntax [a,gX,perf,retcode,delta,tol] = srchcha(net,X,Pd,Tl,Ai,Q,TS,
dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchcha is a linear search routine. It searches in a given direction to
locate the minimum of the performance function in that direction. It
uses a technique based on Charalambous’ method.

[a,gX,perf,retcode,delta,tol] =
srchcha(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)
takes these inputs,

net Neural network

X Vector containing current values of weights and
biases

Pd Delayed input vectors

Tl Layer target vectors

Ai Initial input delay conditions

Q Batch size

TS Time steps

dX Search direction vector

gX Gradient vector

perf Performance value at current X

dperf Slope of performance value at current X in direction
of dX

delta Initial step size

tol Tolerance on search

ch_perf Change in performance on previous step

1-353

srchcha

and returns

a Step size that minimizes performance

gX Gradient at new minimum point

perf Performance value at new minimum point

retcode Return code that has three elements. The
first two elements correspond to the number
of function evaluations in the two stages of
the search. The third element is a return
code. These have different meanings for
different search algorithms. Some might not
be used in this function.

0 Normal

1 Minimum step taken

2 Maximum step taken

3 Beta condition not met

delta New initial step size, based on the current
step size

tol New tolerance on search

Parameters used for the Charalambous algorithm are

alpha Scale factor that determines sufficient reduction in
perf

beta Scale factor that determines sufficiently large step
size

gama Parameter to avoid small reductions in performance,
usually set to 0.1

scale_tol Parameter that relates the tolerance tol to the
initial step size delta, usually set to 20

1-354

srchcha

The defaults for these parameters are set in the training function
that calls them. See traincgf, traincgb, traincgp, trainbfg, and
trainoss.

Dimensions for these variables are

Pd No-by-Ni-by-TS
cell array

Each element P{i,j,ts} is a
Dij-by-Q matrix.

Tl Nl-by-TS cell
array

Each element P{i,ts} is a
Vi-by-Q matrix.

Ai Nl-by-LD cell
array

Each element Ai{i,k} is an
Si-by-Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri *
length(net.inputWeights{i,j}.delays)

Examples Here is a problem consisting of inputs p and targets t to be solved with
a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

1-355

srchcha

A two-layer feed-forward network is created. The network’s input
ranges from [0 to 10]. The first layer has two tansig neurons,
and the second layer has one logsig neuron. The traincgf network
training function and the srchcha search function are to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network

net.trainParam.searchFcn = 'srchcha';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network
Use

You can create a standard network that uses srchcha with newff,
newcf, or newelm.

To prepare a custom network to be trained with traincgf, using the
line search function srchcha,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to
traincgf’s default parameters.

2 Set net.trainParam.searchFcn to 'srchcha'.

The srchcha function can be used with any of the following training
functions: traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithms srchcha locates the minimum of the performance function in the search
direction dX, using an algorithm based on the method described in
Charalambous (see reference below).

1-356

srchcha

References Charalambous, C., “Conjugate gradient algorithm for efficient training
of artificial neural networks,” IEEE Proceedings, Vol. 139, No. 3, June,
1992, pp. 301–310.

Definitions The method of Charalambous, srchcha, was designed to be used in
combination with a conjugate gradient algorithm for neural network
training. Like srchbre and srchhyb, it is a hybrid search. It uses a
cubic interpolation together with a type of sectioning.

See [Char92] for a description of Charalambous’ search. This routine
is used as the default search for most of the conjugate gradient
algorithms because it appears to produce excellent results for many
different problems. It does require the computation of the derivatives
(backpropagation) in addition to the computation of performance, but it
overcomes this limitation by locating the minimum with fewer steps.
This is not true for all problems, and you might want to experiment
with other line searches.

See Also srchbac | srchbre | srchgol | srchhyb

1-357

srchgol

Purpose 1-D minimization using golden section search

Syntax [a,gX,perf,retcode,delta,tol] = srchgol(net,X,Pd,Tl,Ai,Q,TS,
dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchgol is a linear search routine. It searches in a given direction to
locate the minimum of the performance function in that direction. It
uses a technique called the golden section search.

[a,gX,perf,retcode,delta,tol] =
srchgol(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)
takes these inputs,

net Neural network

X Vector containing current values of weights and
biases

Pd Delayed input vectors

Tl Layer target vectors

Ai Initial input delay conditions

Q Batch size

TS Time steps

dX Search direction vector

gX Gradient vector

perf Performance value at current X

dperf Slope of performance value at current X in direction
of dX

delta Initial step size

tol Tolerance on search

ch_perf Change in performance on previous step

1-358

srchgol

and returns

a Step size that minimizes performance

gX Gradient at new minimum point

perf Performance value at new minimum point

retcode Return code that has three elements. The
first two elements correspond to the number
of function evaluations in the two stages of
the search. The third element is a return
code. These have different meanings for
different search algorithms. Some might not
be used in this function.

0 Normal

1 Minimum step taken

2 Maximum step taken

3 Beta condition not met

delta New initial step size, based on the current
step size

tol New tolerance on search

Parameters used for the golden section algorithm are

alpha Scale factor that determines sufficient reduction
in perf

bmax Largest step size

scale_tol Parameter that relates the tolerance tol to the
initial step size delta, usually set to 20

1-359

srchgol

The defaults for these parameters are set in the training function
that calls them. See traincgf, traincgb, traincgp, trainbfg, and
trainoss.

Dimensions for these variables are

Pd No-by-Ni-by-TS
cell array

Each element P{i,j,ts} is a
Dij-by-Q matrix.

Tl Nl-by-TS cell
array

Each element P{i,ts} is a
Vi-by-Q matrix.

Ai Nl-by-LD cell
array

Each element Ai{i,k} is an
Si-by-Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples Here is a problem consisting of inputs p and targets t to be solved with
a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

A two-layer feed-forward network is created. The network’s input
ranges from [0 to 10]. The first layer has two tansig neurons,

1-360

srchgol

and the second layer has one logsig neuron. The traincgf network
training function and the srchgol search function are to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network

net.trainParam.searchFcn = 'srchgol';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network
Use

You can create a standard network that uses srchgol with newff,
newcf, or newelm.

To prepare a custom network to be trained with traincgf, using the
line search function srchgol,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to
traincgf’s default parameters.

2 Set net.trainParam.searchFcn to 'srchgol'.

The srchgol function can be used with any of the following training
functions: traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithms srchgol locates the minimum of the performance function in the
search direction dX, using the golden section search. It is based on the
algorithm as described on page 33 of Scales (see reference below).

References Scales, L.E., Introduction to Non-Linear Optimization, New York,
Springer-Verlag, 1985

1-361

srchgol

Definitions The golden section search srchgol is a linear search that does not
require the calculation of the slope. This routine begins by locating an
interval in which the minimum of the performance function occurs.
This is accomplished by evaluating the performance at a sequence of
points, starting at a distance of delta and doubling in distance each
step, along the search direction. When the performance increases
between two successive iterations, a minimum has been bracketed. The
next step is to reduce the size of the interval containing the minimum.
Two new points are located within the initial interval. The values of
the performance at these two points determine a section of the interval
that can be discarded, and a new interior point is placed within the new
interval. This procedure is continued until the interval of uncertainty is
reduced to a width of tol, which is equal to delta/scale_tol.

See [HDB96], starting on page 12-16, for a complete description of the
golden section search. Try the Neural Network Design demonstration
nnd12sd1 [HDB96] for an illustration of the performance of the golden
section search in combination with a conjugate gradient algorithm.

See Also srchbac | srchbre | srchcha | srchhyb

1-362

srchhyb

Purpose 1-D minimization using a hybrid bisection-cubic search

Syntax [a,gX,perf,retcode,delta,tol] = srchhyb(net,X,Pd,Tl,Ai,Q,TS,
dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchhyb is a linear search routine. It searches in a given direction to
locate the minimum of the performance function in that direction.
It uses a technique that is a combination of a bisection and a cubic
interpolation.

[a,gX,perf,retcode,delta,tol] =
srchhyb(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)
takes these inputs,

net Neural network

X Vector containing current values of weights and
biases

Pd Delayed input vectors

Tl Layer target vectors

Ai Initial input delay conditions

Q Batch size

TS Time steps

dX Search direction vector

gX Gradient vector

perf Performance value at current X

dperf Slope of performance value at current X in direction
of dX

delta Initial step size

tol Tolerance on search

ch_perf Change in performance on previous step

1-363

srchhyb

and returns

a Step size that minimizes performance

gX Gradient at new minimum point

perf Performance value at new minimum point

retcode Return code that has three elements. The
first two elements correspond to the number
of function evaluations in the two stages of
the search. The third element is a return
code. These have different meanings for
different search algorithms. Some might not
be used in this function.

0 Normal

1 Minimum step taken

2 Maximum step taken

3 Beta condition not met

delta New initial step size, based on the current
step size

tol New tolerance on search

Parameters used for the hybrid bisection-cubic algorithm are

alpha Scale factor that determines sufficient reduction
in perf

beta Scale factor that determines sufficiently large
step size

bmax Largest step size

scale_tol Parameter that relates the tolerance tol to the
initial step size delta, usually set to 20

1-364

srchhyb

The defaults for these parameters are set in the training function
that calls them. See traincgf, traincgb, traincgp, trainbfg, and
trainoss.

Dimensions for these variables are

Pd No-by-Ni-by-TS
cell array

Each element P{i,j,ts} is a
Dij-by-Q matrix.

Tl Nl-by-TS cell
array

Each element P{i,ts} is a
Vi-by-Q matrix.

Ai Nl-by-LD cell
array

Each element Ai{i,k} is an
Si-by-Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples Here is a problem consisting of inputs p and targets t to be solved with
a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

A two-layer feed-forward network is created. The network’s input
ranges from [0 to 10]. The first layer has two tansig neurons,

1-365

srchhyb

and the second layer has one logsig neuron. The traincgf network
training function and the srchhyb search function are to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network

net.trainParam.searchFcn = 'srchhyb';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network
Use

You can create a standard network that uses srchhyb with newff,
newcf, or newelm.

To prepare a custom network to be trained with traincgf, using the
line search function srchhyb,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to
traincgf’s default parameters.

2 Set net.trainParam.searchFcn to 'srchhyb'.

The srchhyb function can be used with any of the following training
functions: traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithms srchhyb locates the minimum of the performance function in the search
direction dX, using the hybrid bisection-cubic interpolation algorithm
described on page 50 of Scales (see reference below).

References Scales, L.E., Introduction to Non-Linear Optimization, New York
Springer-Verlag, 1985

1-366

srchhyb

Definitions Like Brent’s search, srchhyb is a hybrid algorithm. It is a combination
of bisection and cubic interpolation. For the bisection algorithm, one
point is located in the interval of uncertainty, and the performance
and its derivative are computed. Based on this information, half of
the interval of uncertainty is discarded. In the hybrid algorithm, a
cubic interpolation of the function is obtained by using the value of the
performance and its derivative at the two endpoints. If the minimum of
the cubic interpolation falls within the known interval of uncertainty,
then it is used to reduce the interval of uncertainty. Otherwise, a step
of the bisection algorithm is used.

See [Scal85] for a complete description of the hybrid bisection-cubic
search. This algorithm does require derivative information, so it
performs more computations at each step of the algorithm than the
golden section search or Brent’s algorithm.

See Also srchbac | srchbre | srchcha | srchgol

1-367

sse

Purpose Sum squared error performance function

Syntax perf = sse(net,t,y,ew)
[...] = sse(...,'regularization',regularization)
[...] = sse(...,'normalization',normalization)
[...] = sse(...,'squaredWeighting',squaredWeighting)
[...] = sse(...,FP)

Description sse is a network performance function. It measures performance
according to the sum of squared errors.

perf = sse(net,t,y,ew) takes these input arguments and optional
function parameters,

net Neural network

t Matrix or cell array of target vectors

y Matrix or cell array of output vectors

ew Error weights (default = {1})

and returns the sum squared error.

This function has three optional function parameters which can be
defined with parameter name/pair arguments, or as a structure FP
argument with fields having the parameter name and assigned the
parameter values.

[...] = sse(...,'regularization',regularization)

[...] = sse(...,'normalization',normalization)

[...] = sse(...,'squaredWeighting',squaredWeighting)

[...] = sse(...,FP)

• regularization — can be set to any value between the default of
0 and 1. The greater the regularization value, the more squared
weights and biases are taken into account in the performance
calculation.

1-368

sse

• normalization — can be set to the default 'absolute', or
'normalized' (which normalizes errors to the [+2 -2] range
consistent with normalized output and target ranges of [-1 1]) or
'percent' (which normalizes errors to the range [-1 +1]).

• squaredWeighting — can be set to the default true, for applying
error weights to squared errors; or false for applying error weights
to the absolute errors before squaring.

Examples Here a network is trained to fit a simple data set and its performance
calculated

[x,t] = simplefit_dataset;
net = fitnet(10);
net.performFcn = 'sse';
net = train(net,x,t)
y = net(x)
e = t-y
perf = sse(net,t,y)

Network
Use

To prepare a custom network to be trained with sse, set
net.performFcn to 'sse'. This automatically sets net.performParam
to the default function parameters.

Then calling train, adapt or perform will result in sse being used
to calculate performance.

1-369

staticderiv

Purpose Static derivative function

Syntax staticderiv('dperf_dwb',net,X,T,Xi,Ai,EW)
staticderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description This function calculates derivatives using the chain rule from the
networks performance or outputs back to its inputs. For time series
data and dynamic networks this function ignores the delay connections
resulting in a approximation (which may be good or not) of the actual
derivative. This function is used by Elman networks (elmannet) which
is a dynamic network trained by the static derivative approximation
when full derivative calculations are not available. As full derivatives
are calculated by all the other derivative functions, this function is not
recommended for dynamic networks except for research into training
algorithms.

staticderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these
arguments,

net Neural network

X Inputs, an RxQ matrix (or NxTS cell array of RixQ
matrices)

T Targets, an SxQ matrix (or MxTS cell array of SixQ
matrices)

Xi Initial input delay states (optional)

Ai Initial layer delay states (optional)

EW Error weights (optional)

and returns the gradient of performance with respect to the network’s
weights and biases, where R and S are the number of input and output
elements and Q is the number of samples (and N and M are the number
of input and output signals, Ri and Si are the number of each input and
outputs elements, and TS is the number of timesteps).

1-370

staticderiv

staticderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of
errors with respect to the network’s weights and biases.

Examples Here a feedforward network is trained and both the gradient and
Jacobian are calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = staticderiv('dperf_dwb',net,x,t)
jwb = staticderiv('de_dwb',net,x,t)

See Also bttderiv | defaultderiv | fpderiv | num2deriv

1-371

sumabs

Purpose Sum of absolute elements of matrix or matrices

Syntax [s,n] = sumabs(x)

Description [s,n] = sumabs(x) takes a matrix or cell array of matrices and
returns,

s Sum of all absolute finite values

n Number of finite values

If x contains no finite values, the sum returned is 0.

Examples m = sumabs([1 2;3 4])
[m,n] = sumabs({[1 2; NaN 4], [4 5; 2 3]})

See Also meanabs | meansqr | sumsqr

1-372

sumsqr

Purpose Sum of squared elements of matrix or matrices

Syntax [s,n] = sumsqr(x)

Description [s,n] = sumsqr(x) takes a matrix or cell array of matrices and
returns,

s Sum of all squared finite values

n Number of finite values

If x contains no finite values, the sum returned is 0.

Examples m = sumsqr([1 2;3 4])
[m,n] = sumsqr({[1 2; NaN 4], [4 5; 2 3]})

See Also meanabs | meansqr | sumabs

1-373

tansig

Purpose Hyperbolic tangent sigmoid transfer function

Graph
and
Symbol

Syntax A = tansig(N,FP)

Description tansig is a neural transfer function. Transfer functions calculate a
layer’s output from its net input.

A = tansig(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N’s elements squashed into [-1 1].

Examples Here is the code to create a plot of the tansig transfer function.

n = -5:0.1:5;
a = tansig(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'tansig';

Algorithms a = tansig(n) = 2/(1+exp(-2*n))-1

1-374

tansig

This is mathematically equivalent to tanh(N). It differs in that it runs
faster than the MATLAB implementation of tanh, but the results can
have very small numerical differences. This function is a good tradeoff
for neural networks, where speed is important and the exact shape of
the transfer function is not.

References Vogl, T.P., J.K. Mangis, A.K. Rigler, W.T. Zink, and D.L. Alkon,
“Accelerating the convergence of the backpropagation method,”
Biological Cybernetics, Vol. 59, 1988, pp. 257–263

See Also sim | logsig

1-375

tapdelay

Purpose Shift neural network time series data for tap delay

Syntax tapdelay(x,i,ts,delays)

Description tapdelay(x,i,ts,delays) takes these arguments,

x Neural network time series data

i Signal index

ts Timestep index

delays Row vector of increasing zero or positive delays

and returns the tap delay values of signal i at timestep ts given the
specified tap delays.

Examples Here a random signal x consisting of eight timesteps is defined, and a
tap delay with delays of [0 1 4] is simulated at timestep 6.

x = num2cell(rand(1,8));
y = tapdelay(x,1,6,[0 1 4])

See Also nndata | extendts | preparets

1-376

timedelaynet

Purpose Time delay neural network

Syntax timedelaynet(inputDelays,hiddenSizes,trainFcn)

Description Time delay networks are similar to feedforward networks, except that
the input weight has a tap delay line associated with it. This allows the
network to have a finite dynamic response to time series input data.
This network is also similar to the distributed delay neural network
(distdelaynet), which has delays on the layer weights in addition to
the input weight.

timedelaynet(inputDelays,hiddenSizes,trainFcn) takes these
arguments,

inputDelays Row vector of increasing 0 or positive delays
(default = 1:2)

hiddenSizes Row vector of one or more hidden layer sizes
(default = 10)

trainFcn Training function (default = 'trainlm')

and returns a time delay neural network.

Examples Here a time delay neural network is used to solve a simple time series
problem.

[X,T] = simpleseries_dataset;
net = timedelaynet(1:2,10)
[Xs,Xi,Ai,Ts] = preparets(net,X,T)
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y)

See Also preparets | removedelay | distdelaynet | narnet | narxnet

1-377

tonndata

Purpose Convert data to standard neural network cell array form

Syntax [y,wasMatrix] = tonndata(x,columnSamples,cellTime)

Description [y,wasMatrix] = tonndata(x,columnSamples,cellTime) takes these
arguments,

x Matrix or cell array of matrices

columnSamples True if original samples are oriented as columns,
false if rows

cellTime True if original samples are columns of cell, false
if they are store in matrix

and returns

y Original data transformed into standard neural
network cell array form

wasMatrix True if original data was a matrix (as apposed
to cell array)

If columnSamples is false, then matrix x or matrices in cell array x will
be transposed, so row samples will now be stored as column vectors.

If cellTime is false, then matrix samples will be separated into columns
of a cell array so time originally represented as vectors in a matrix will
now be represented as columns of a cell array.

The returned value wasMatrix can be used by fromnndata to reverse
the transformation.

Examples Here data consisting of six timesteps of 5-element vectors is originally
represented as a matrix with six columns is converted to standard
neural network representation and back.

1-378

tonndata

x = rand(5,6)
[y,wasMatrix] = tonndata(x,true,false)
x2 = fromnndata(y,wasMatrix,columnSamples,cellTime)

See Also nndata | fromnndata | nndata2sim | sim2nndata

1-379

train

Purpose Train neural network

Syntax [net,tr] = train(net,X,T,Xi,Ai)
[net,...] = train(...,'useParallel',...)
[net,...] = train(...,'useGPU',...)
[net,...] = train(...,'showResources',...)
[net,...] = train(Xcomposite,Tcomposite,...)
[net,...] = train(Xgpu,Tgpu,...)

To Get
Help

Type help network/train.

Description train trains a network net according to net.trainFcn and
net.trainParam.

[net,tr] = train(net,X,T,Xi,Ai) takes

net Network

X Network inputs

T Network targets (default = zeros)

Xi Initial input delay conditions (default = zeros)

Ai Initial layer delay conditions (default = zeros)

and returns

net New network

tr Training record (epoch and perf)

Note that T is optional and need only be used for networks that require
targets. Xi is also optional and need only be used for networks that
have input or layer delays.

train’s signal arguments can have two formats: cell array or matrix.

1-380

train

The cell array format is easiest to describe. It is most convenient for
networks with multiple inputs and outputs, and allows sequences of
inputs to be presented.

X Ni-by-TS cell
array

Each element X{i,j,ts} is an
Ni-by-Q matrix.

T Nl-by-TS cell
array

Each element T{i,ts} is a
Ui-by-Q matrix.

Xi Ni-by-ID cell
array

Each element Xi{i,k} is an
Ri-by-Q matrix.

Ai Nl-by-LD cell
array

Each element Ai{i,k} is an
Si-by-Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

ID = net.numInputDelays

LD = net.numLayerDelays

TS = Number of time steps

Q = Batch size

Ri = net.inputs{i}.size

Si = net.layers{i}.size

The columns of Xi and Ai are ordered from the oldest delay condition
to the most recent:

Xi{i,k} = Input i at time ts = k - ID

Ai{i,k} = Layer output i at time ts = k - LD

1-381

train

The matrix format can be used if only one time step is to be simulated
(TS = 1). It is convenient for networks with only one input and output,
but can be used with networks that have more.

Each matrix argument is found by storing the elements of the
corresponding cell array argument in a single matrix:

X (sum of Ri)-by-Q matrix

T (sum of Ui)-by-Q matrix

Xi (sum of Ri)-by-(ID*Q) matrix

Ai (sum of Si)-by-(LD*Q) matrix

[net,...] = train(...,'useParallel',...),
[net,...] = train(...,'useGPU',...), or [net,...] =
train(...,'showResources',...) accepts optional name/value pair
arguments to control how calculations are performed. Two of these
options allow training to happen faster or on larger datasets using
parallel workers or GPU devices if Parallel Computing Toolbox is
available. These are the optional name/value pairs:

'useParallel','no'Calculations occur on normal MATLAB thread. This
is the default 'useParallel' setting.

'useParallel','yes'Calculations occur on parallel workers if a MATLAB
pool is open. Otherwise calculations occur on the
normal MATLAB thread.

'useGPU','no' Calculations occur on the CPU. This is the default
’useGPU’ setting.

1-382

train

'useGPU','yes'Calculations occur on the current gpuDevice if it is
a supported GPU (See Parallel Computing Toolbox
for GPU requirements.) If the current gpuDevice is
not supported, calculations remain on the CPU. If
'useParallel' is also 'yes' and a MATLAB pool
is open, then each worker with a unique GPU uses
that GPU, other workers run calculations on their
respective CPU cores.

'useGPU','only'If no MATLAB pool is open, then this setting is the
same as 'yes'. If a MATLAB pool is open then only
workers with unique GPUs are used. However, if a
MATLAB pool is open, but no supported GPUs are
available, then calculations revert to performing on
all worker CPUs.

'showResources','no'Do not display computing resources used at the
command line. This is the default setting.

'showResources','yes'Show at the command line a summary of the
computing resources actually used. The actual
resources may differ from the requested resources,
if parallel or GPU computing is requested but a
MATLAB pool is not open or a supported GPU is
not available. When parallel workers are used, each
worker’s computation mode is described, including
workers in the pool that are not used.

'reduction',N For most neural networks, the default CPU training
computation mode is a compiled MEX algorithm.
However, for large networks the calculations might
occur with a MATLAB calculation mode. This can
be confirmed using 'showResources'. If MATLAB
is being used and memory is an issue, setting the
reduction option to a value N greater than 1, reduces
much of the temporary storage required to train by a
factor of N, in exchange for longer training times.

1-383

train

[net,...] = train(Xcomposite,Tcomposite,...) takes Composite
data and returns Composite results. If Composite data is used, then
'useParallel' is automatically set to 'yes'.

[net,...] = train(Xgpu,Tgpu,...) takes gpuArray data and
returns gpuArray results. If gpuArray data is used, then 'useGPU' is
automatically set to 'yes'.

Examples Train and Plot Networks

Here input x and targets t define a simple function that you can plot:

x = [0 1 2 3 4 5 6 7 8];
t = [0 0.84 0.91 0.14 -0.77 -0.96 -0.28 0.66 0.99];
plot(x,t,'o')

Here feedforwardnet creates a two-layer feed-forward network. The
network has one hidden layer with ten neurons.

net = feedforwardnet(10);
net = configure(net,x,t);
y1 = net(x)
plot(x,t,'o',x,y1,'x')

The network is trained and then resimulated.

net = train(net,x,t);
y2 = net(x)
plot(x,t,'o',x,y1,'x',x,y2,'*')

Train a NARX Time Series Network

This example trains an open-loop nonlinear-autoregressive network
with external input, to model a levitated magnet system defined by a
control current x and the magnet’s vertical position response t, then
simulates the network. The function preparets prepares the data
before training and simulation. It creates the open-loop network’s
combined inputs xo, which contains both the external input x and
previous values of position t. It also prepares the delay states xi.

1-384

train

[x,t] = maglev_dataset;
net = narxnet(10);
[xo,xi,~,to] = preparets(net,x,{},t);
net = train(net,xo,to,xi);
y = net(xo,xi)

This same system can also be simulated in closed-loop form.

netc = closeloop(net);
view(netc)
[xc,xi,ai,tc] = preparets(netc,x,{},t);
yc = netc(xc,xi,ai);

Train a Network in Parallel on a MATLAB Pool

Parallel Computing Toolbox allows Neural Network Toolbox to simulate
and train networks faster and on larger datasets than can fit on one
PC. Here training and simulation happens across parallel MATLAB
workers.

matlabpool open
[X,T] = vinyl_dataset;
net = feedforwardnet(10);
net = train(net,X,T,'useParallel','yes','showResources','yes');
Y = net(X);

Train a Network on GPUs

Use Composite values to distribute the data manually, and get back the
results as a Composite value. If the data is loaded as it is distributed
then while each piece of the dataset must fit in RAM, the entire dataset
is limited only by the total RAM of all the workers.

Xc = Composite;
Tc = Composite;
for i=1:numel(Xc)

Xc{i} = X+rand(size(X))*0.1; % (Use real data instead
Tc{i} = T+rand(size(T))*0.1; % of random data)

end
net = train(net,Xc,Tc);

1-385

train

Yc = net(Xc);

Networks can be trained using the current GPU device, if it is supported
by Parallel Computing Toolbox.

net = train(net,X,T,'useGPU','yes');
y = net(X);

To put the data on a GPU manually:

Xgpu = gpuArray(X);
Tgpu = gpuArray(T);
net = train(net,Xgpu,Tgpu);
Ygpu = net(Xgpu);
Y = gather(Ygpu);

To run in parallel, with workers associated with unique GPUs taking
advantage of that hardware, while the rest of the workers use CPUs:

net = train(net,X,T,'useParallel','yes','useGPU','yes');
y = net(X);

Using only workers with unique GPUs might result in higher speed, as
CPU workers might not keep up.

net = train(net,X,T,'useParallel','yes','useGPU','only');
Y = net(X);

Algorithms train calls the function indicated by net.trainFcn, using the training
parameter values indicated by net.trainParam.

Typically one epoch of training is defined as a single presentation of all
input vectors to the network. The network is then updated according to
the results of all those presentations.

Training occurs until a maximum number of epochs occurs, the
performance goal is met, or any other stopping condition of the function
net.trainFcn occurs.

1-386

train

Some training functions depart from this norm by presenting only one
input vector (or sequence) each epoch. An input vector (or sequence)
is chosen randomly for each epoch from concurrent input vectors (or
sequences). competlayer returns networks that use trainru, a training
function that does this.

See Also init | revert | sim | adapt

1-387

trainb

Purpose Batch training with weight and bias learning rules

Syntax net.trainFcn = 'trainb'
[net,tr] = train(net,...)

Description trainb is not called directly. Instead it is called by train for networks
whose net.trainFcn property is set to 'trainb', thus:

net.trainFcn = 'trainb'

[net,tr] = train(net,...)

trainb trains a network with weight and bias learning rules with batch
updates. The weights and biases are updated at the end of an entire
pass through the input data.

Training occurs according to trainb’s training parameters, shown here
with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.show 25 Epochs between displays (NaN for no
displays)

net.trainParam.showCommandLinefalse Generate command-line output

net.trainParam.showWindow true Show training GUI

net.trainParam.time inf Maximum time to train in seconds

Network
Use

You can create a standard network that uses trainb by calling
linearlayer.

To prepare a custom network to be trained with trainb,

1 Set net.trainFcn to 'trainb'. This sets net.trainParam to
trainb’s default parameters.

1-388

trainb

2 Set each net.inputWeights{i,j}.learnFcn to a learning function.
Set each net.layerWeights{i,j}.learnFcn to a learning function.
Set each net.biases{i}.learnFcn to a learning function. (Weight
and bias learning parameters are automatically set to default values
for the given learning function.)

To train the network,

1 Set net.trainParam properties to desired values.

2 Set weight and bias learning parameters to desired values.

3 Call train.

Algorithms Each weight and bias is updated according to its learning function after
each epoch (one pass through the entire set of input vectors).

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.

• Performance is minimized to the goal.

• The maximum amount of time is exceeded.

• Validation performance has increased more than max_fail times
since the last time it decreased (when using validation).

See Also linearlayer | train

1-389

trainbfg

Purpose BFGS quasi-Newton backpropagation

Syntax net.trainFcn = 'trainbfg'
[net,tr] = train(net,...)

Description trainbfg is a network training function that updates weight and bias
values according to the BFGS quasi-Newton method.

net.trainFcn = 'trainbfg'

[net,tr] = train(net,...)

Training occurs according to trainbfg’s training parameters, shown
here with their default values:

net.trainParam.epochs 100 Maximum number of epochs to
train

net.trainParam.showWindow 0 Show training window

net.trainParam.show 25 Epochs between displays (NaN for
no displays)

net.trainParam.showCommandLine 0 Generate command-line output

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in
seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.searchFcn 'srchcha' Name of line search routine to
use

Parameters related to line search methods (not all used for all methods):

1-390

trainbfg

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for
linear search.

net.trainParam.alpha 0.001 Scale factor that determines sufficient
reduction in perf

net.trainParam.beta 0.1 Scale factor that determines sufficiently large
step size

net.trainParam.delta 0.01 Initial step size in interval location step

net.trainParam.gama 0.1 Parameter to avoid small reductions in
performance, usually set to 0.1 (see srch_cha)

net.trainParam.low_lim 0.1 Lower limit on change in step size

net.trainParam.up_lim 0.5 Upper limit on change in step size

net.trainParam.maxstep 100 Maximum step length

net.trainParam.minstep 1.0e-6 Minimum step length

net.trainParam.bmax 26 Maximum step size

net.trainParam.batch_frag 0 In case of multiple batches, they are considered
independent. Any nonzero value implies a
fragmented batch, so the final layer’s conditions
of a previous trained epoch are used as initial
conditions for the next epoch.

Network
Use

You can create a standard network that uses trainbfg with
feedfowardnet or cascadeforwardnet. To prepare a custom network
to be trained with trainbfg:

1 Set NET.trainFcn to 'trainbfg'. This sets NET.trainParam to
trainbfg’s default parameters.

2 Set NET.trainParam properties to desired values.

In either case, calling train with the resulting network trains the
network with trainbfg.

1-391

trainbfg

Examples Here a neural network is trained to predict median house prices.

[x,t] = house_dataset;
net = feedforwardnet(10,'trainbfg');
net = train(net,x,t);
y = net(x)

Algorithms trainbfg can train any network as long as its weight, net input, and
transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf
with respect to the weight and bias variables X. Each variable is
adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to
minimize the performance along the search direction. The line search
function searchFcn is used to locate the minimum point. The first
search direction is the negative of the gradient of performance. In
succeeding iterations the search direction is computed according to
the following formula:

dX = -H\gX;

where gX is the gradient and H is a approximate Hessian matrix. See
page 119 of Gill, Murray, and Wright (Practical Optimization, 1981) for
a more detailed discussion of the BFGS quasi-Newton method.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times
since the last time it decreased (when using validation).

1-392

trainbfg

References Gill, Murray, & Wright, Practical Optimization, 1981

Definitions Newton’s method is an alternative to the conjugate gradient methods
for fast optimization. The basic step of Newton’s method is

x x A gk k k k+
−= −1
1

where Ak
−1 is the Hessian matrix (second derivatives) of the

performance index at the current values of the weights and biases.
Newton’s method often converges faster than conjugate gradient
methods. Unfortunately, it is complex and expensive to compute the
Hessian matrix for feedforward neural networks. There is a class of
algorithms that is based on Newton’s method, but which does not
require calculation of second derivatives. These are called quasi-Newton
(or secant) methods. They update an approximate Hessian matrix at
each iteration of the algorithm. The update is computed as a function of
the gradient. The quasi-Newton method that has been most successful
in published studies is the Broyden, Fletcher, Goldfarb, and Shanno
(BFGS) update. This algorithm is implemented in the trainbfg routine.

The BFGS algorithm is described in [DeSc83]. This algorithm requires
more computation in each iteration and more storage than the conjugate
gradient methods, although it generally converges in fewer iterations.
The approximate Hessian must be stored, and its dimension is n x n,
where n is equal to the number of weights and biases in the network.
For very large networks it might be better to use Rprop or one of
the conjugate gradient algorithms. For smaller networks, however,
trainbfg can be an efficient training function.

See Also cascadeforwardnet | feedforwardnet | traingdm | traingda |
traingdx | trainlm | trainrp | traincgf | traincgb | trainscg |
traincgp | trainoss

1-393

trainbfgc

Purpose BFGS quasi-Newton backpropagation for use with NN model reference
adaptive controller

Syntax [net,TR,Y,E,Pf,Af,flag_stop] = trainbfgc(net,P,T,Pi,Ai,epochs,
TS,Q)

info = trainbfgc(code)

Description trainbfgc is a network training function that updates weight and bias
values according to the BFGS quasi-Newton method. This function is
called from nnmodref, a GUI for the model reference adaptive control
Simulink block.

[net,TR,Y,E,Pf,Af,flag_stop] =
trainbfgc(net,P,T,Pi,Ai,epochs,TS,Q) takes these inputs,

net Neural network

P Delayed input vectors

T Layer target vectors

Pi Initial input delay conditions

Ai Initial layer delay conditions

epochs Number of iterations for training

TS Time steps

Q Batch size

and returns

net Trained network

TR Training record of various values over each
epoch:

TR.epoch Epoch number

TR.perf Training performance

1-394

trainbfgc

TR.vperf Validation performance

TR.tperf Test performance

Y Network output for last epoch

E Layer errors for last epoch

Pf Final input delay conditions

Af Collective layer outputs for last epoch

flag_stop Indicates if the user stopped the training

Training occurs according to trainbfgc’s training parameters, shown
here with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.show 25 Epochs between displays (NaN for no displays)

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.searchFcn 'srchbacx'Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for
linear search.

net.trainParam.alpha 0.001 Scale factor that determines sufficient
reduction in perf

net.trainParam.beta 0.1 Scale factor that determines sufficiently large
step size

net.trainParam.delta 0.01 Initial step size in interval location step

1-395

trainbfgc

net.trainParam.gama 0.1 Parameter to avoid small reductions in
performance, usually set to 0.1 (see srch_cha)

net.trainParam.low_lim 0.1 Lower limit on change in step size

net.trainParam.up_lim 0.5 Upper limit on change in step size

net.trainParam.maxstep 100 Maximum step length

net.trainParam.minstep 1.0e-6 Minimum step length

net.trainParam.bmax 26 Maximum step size

info = trainbfgc(code) returns useful information for each code
string:

'pnames' Names of training parameters

'pdefaults' Default training parameters

Algorithms trainbfgc can train any network as long as its weight, net input, and
transfer functions have derivative functions. Backpropagation is used to
calculate derivatives of performance perf with respect to the weight and
bias variables X. Each variable is adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to
minimize the performance along the search direction. The line search
function searchFcn is used to locate the minimum point. The first
search direction is the negative of the gradient of performance. In
succeeding iterations the search direction is computed according to
the following formula:

dX = -H\gX;

1-396

trainbfgc

where gX is the gradient and H is an approximate Hessian matrix. See
page 119 of Gill, Murray, and Wright (Practical Optimization, 1981) for
a more detailed discussion of the BFGS quasi-Newton method.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Precision problems have occurred in the matrix inversion.

References Gill, Murray, and Wright, Practical Optimization, 1981

1-397

trainbr

Purpose Bayesian regulation backpropagation

Syntax net.trainFcn = 'trainbr'
[net,tr] = train(net,...)

Description trainbr is a network training function that updates the weight and bias
values according to Levenberg-Marquardt optimization. It minimizes a
combination of squared errors and weights, and then determines the
correct combination so as to produce a network that generalizes well.
The process is called Bayesian regularization.

net.trainFcn = 'trainbr'

[net,tr] = train(net,...)

Training occurs according to trainbr’s training parameters, shown
here with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.mu 0.005 Marquardt adjustment parameter

net.trainParam.mu_dec 0.1 Decrease factor for mu

net.trainParam.mu_inc 10 Increase factor for mu

net.trainParam.mu_max 1e10 Maximum value for mu

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.mem_reduc 1 Factor to use for memory/speed tradeoff

net.trainParam.min_grad 1e-10 Minimum performance gradient

net.trainParam.show 25 Epochs between displays (NaN for no
displays)

net.trainParam.showCommandLine 0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.time inf Maximum time to train in seconds

1-398

trainbr

Network
Use

You can create a standard network that uses trainbr with
feedforwardnet or cascadeforwardnet. To prepare a custom network
to be trained with trainbr,

1 Set NET.trainFcn to 'trainbr'. This sets NET.trainParam to
trainbr’s default parameters.

2 Set NET.trainParam properties to desired values.

In either case, calling train with the resulting network trains the
network with trainbr. See feedforwardnet and cascadeforwardnet
for examples.

Examples Here is a problem consisting of inputs p and targets t to be solved with
a network. It involves fitting a noisy sine wave.

p = [-1:.05:1];
t = sin(2*pi*p)+0.1*randn(size(p));

A feed-forward network is created with a hidden layer of 2 neurons.

net = feedforwardnet(2,'trainbr');

Here the network is trained and tested.

net = train(net,p,t);
a = net(p)

Algorithms trainbr can train any network as long as its weight, net input, and
transfer functions have derivative functions.

Bayesian regularization minimizes a linear combination of squared
errors and weights. It also modifies the linear combination so that
at the end of training the resulting network has good generalization
qualities. See MacKay (Neural Computation, Vol. 4, No. 3, 1992, pp.
415 to 447) and Foresee and Hagan (Proceedings of the International

1-399

trainbr

Joint Conference on Neural Networks, June, 1997) for more detailed
discussions of Bayesian regularization.

This Bayesian regularization takes place within the
Levenberg-Marquardt algorithm. Backpropagation is used to
calculate the Jacobian jX of performance perf with respect to the
weight and bias variables X. Each variable is adjusted according to
Levenberg-Marquardt,

jj = jX * jX
je = jX * E
dX = -(jj+I*mu) \ je

where E is all errors and I is the identity matrix.

The adaptive value mu is increased by mu_inc until the change shown
above results in a reduced performance value. The change is then made
to the network, and mu is decreased by mu_dec.

The parameter mem_reduc indicates how to use memory and speed to
calculate the Jacobian jX. If mem_reduc is 1, then trainlm runs the
fastest, but can require a lot of memory. Increasing mem_reduc to 2 cuts
some of the memory required by a factor of two, but slows trainlm
somewhat. Higher values continue to decrease the amount of memory
needed and increase the training times.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• mu exceeds mu_max.

Limitations This function uses the Jacobian for calculations, which assumes that
performance is a mean or sum of squared errors. Therefore networks

1-400

trainbr

trained with this function must use either the mse or sse performance
function.

References MacKay, Neural Computation, Vol. 4, No. 3, 1992, pp. 415–447

Foresee and Hagan, Proceedings of the International Joint Conference
on Neural Networks, June, 1997

See Also cascadeforwardnet | feedforwardnet | traingdm | traingda |
traingdx | trainlm | trainrp | traincgf | traincgb | trainscg |
traincgp | trainbfg

1-401

trainbu

Purpose Batch unsupervised weight/bias training

Syntax net.trainFcn = 'trainbu'
[net,tr] = train(net,...)

Description trainbu trains a network with weight and bias learning rules with
batch updates. Weights and biases updates occur at the end of an entire
pass through the input data.

trainbu is not called directly. Instead the train function calls it for
networks whose NET.trainFcn property is set to 'trainbu', thus:

net.trainFcn = 'trainbu'

[net,tr] = train(net,...)

Training occurs according to trainbu training parameters, shown here
with the following default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.show 25 Epochs between displays (NaN for no
displays)

net.trainParam.showCommandLine false Generate command-line output

net.trainParam.showGUI true Show training GUI

net.trainParam.time inf Maximum time to train in seconds

Validation and test vectors have no impact on training for this function,
but act as independent measures of network generalization.

Network
Use

You can create a standard network that uses trainbu by calling
selforgmap. To prepare a custom network to be trained with trainb:

1 Set NET.trainFcn to 'trainbu'. (This option sets NET.trainParam
to trainbu default parameters.)

2 Set each NET.inputWeights{i,j}.learnFcn to a learning function.

1-402

trainbu

3 Set each NET.layerWeights{i,j}.learnFcn to a learning function.

4 Set each NET.biases{i}.learnFcn to a learning function. (Weight
and bias learning parameters are automatically set to default values
for the given learning function.)

To train the network:

1 Set NET.trainParam properties to desired values.

2 Set weight and bias learning parameters to desired values.

3 Call train.

See selforgmap for training examples.

Algorithms Each weight and bias updates according to its learning function after
each epoch (one pass through the entire set of input vectors).

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.

• Performance is minimized to the goal.

• The maximum amount of time is exceeded.

• Validation performance has increased more than max_fail times
since the last time it decreased (when using validation).

See Also train | trainb

1-403

trainc

Purpose Cyclical order weight/bias training

Syntax net.trainFcn = 'trainc'
[net,tr] = train(net,...)

Description trainc is not called directly. Instead it is called by train for networks
whose net.trainFcn property is set to 'trainc', thus:

net.trainFcn = 'trainc'

[net,tr] = train(net,...)

trainc trains a network with weight and bias learning rules with
incremental updates after each presentation of an input. Inputs are
presented in cyclic order.

Training occurs according to trainc’s training parameters, shown here
with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.show 25 Epochs between displays (NaN for no
displays)

net.trainParam.showCommandLine false Generate command-line output

net.trainParam.showWindow true Show training GUI

net.trainParam.time inf Maximum time to train in seconds

Network
Use

You can create a standard network that uses trainc by calling
competlayer. To prepare a custom network to be trained with trainc,

1 Set net.trainFcn to 'trainc'. This sets net.trainParam to
trainc’s default parameters.

1-404

trainc

2 Set each net.inputWeights{i,j}.learnFcn to a learning function.
Set each net.layerWeights{i,j}.learnFcn to a learning function.
Set each net.biases{i}.learnFcn to a learning function. (Weight
and bias learning parameters are automatically set to default values
for the given learning function.)

To train the network,

1 Set net.trainParam properties to desired values.

2 Set weight and bias learning parameters to desired values.

3 Call train.

See newp for training examples.

Algorithms For each epoch, each vector (or sequence) is presented in order to the
network, with the weight and bias values updated accordingly after
each individual presentation.

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.

• Performance is minimized to the goal.

• The maximum amount of time is exceeded.

See Also competlayer | train

1-405

traincgb

Purpose Conjugate gradient backpropagation with Powell-Beale restarts

Syntax net.trainFcn = 'traincgb'
[net,tr] = train(net,...)

Description traincgb is a network training function that updates weight and
bias values according to the conjugate gradient backpropagation with
Powell-Beale restarts.

net.trainFcn = 'traincgb'

[net,tr] = train(net,...)

Training occurs according to traincgb’s training parameters, shown
here with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.show 25 Epochs between displays (NaN for no
displays)

net.trainParam.showCommandLine 0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.searchFcn 'srchcha'Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for
linear search.

net.trainParam.alpha 0.001 Scale factor that determines sufficient reduction
in perf

1-406

traincgb

net.trainParam.beta 0.1 Scale factor that determines sufficiently large
step size

net.trainParam.delta 0.01 Initial step size in interval location step

net.trainParam.gama 0.1 Parameter to avoid small reductions in
performance, usually set to 0.1 (see srch_cha)

net.trainParam.low_lim 0.1 Lower limit on change in step size

net.trainParam.up_lim 0.5 Upper limit on change in step size

net.trainParam.maxstep 100 Maximum step length

net.trainParam.minstep 1.0e-6 Minimum step length

net.trainParam.bmax 26 Maximum step size

Network
Use

You can create a standard network that uses traincgb with
feedforwardnet or cascadeforwardnet.

To prepare a custom network to be trained with traincgb,

1 Set net.trainFcn to 'traincgb'. This sets net.trainParam to
traincgb’s default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the
network with traincgb.

Examples Here a neural network is trained to predict median house prices.

[x,t] = house_dataset;
net = feedforwardnet(10,'traincgb');
net = train(net,x,t);
y = net(x)

Algorithms traincgb can train any network as long as its weight, net input, and
transfer functions have derivative functions.

1-407

traincgb

Backpropagation is used to calculate derivatives of performance perf
with respect to the weight and bias variables X. Each variable is
adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to
minimize the performance along the search direction. The line search
function searchFcn is used to locate the minimum point. The first
search direction is the negative of the gradient of performance. In
succeeding iterations the search direction is computed from the new
gradient and the previous search direction according to the formula

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several
different ways. The Powell-Beale variation of conjugate gradient is
distinguished by two features. First, the algorithm uses a test to
determine when to reset the search direction to the negative of the
gradient. Second, the search direction is computed from the negative
gradient, the previous search direction, and the last search direction
before the previous reset. See Powell,Mathematical Programming, Vol.
12, 1977, pp. 241 to 254, for a more detailed discussion of the algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times
since the last time it decreased (when using validation).

References Powell, M.J.D., “Restart procedures for the conjugate gradient method,”
Mathematical Programming, Vol. 12, 1977, pp. 241–254

1-408

traincgb

Definitions For all conjugate gradient algorithms, the search direction is
periodically reset to the negative of the gradient. The standard reset
point occurs when the number of iterations is equal to the number of
network parameters (weights and biases), but there are other reset
methods that can improve the efficiency of training. One such reset
method was proposed by Powell [Powe77], based on an earlier version
proposed by Beale [Beal72]. This technique restarts if there is very
little orthogonality left between the current gradient and the previous
gradient. This is tested with the following inequality:

g g gk
T

k k− ≥1
20 2.

If this condition is satisfied, the search direction is reset to the negative
of the gradient.

The traincgb routine has somewhat better performance than traincgp
for some problems, although performance on any given problem is
difficult to predict. The storage requirements for the Powell-Beale
algorithm (six vectors) are slightly larger than for Polak-Ribiére (four
vectors).

See Also traingdm | traingda | traingdx | trainlm | traincgp | traincgf |
trainscg | trainoss | trainbfg

1-409

traincgf

Purpose Conjugate gradient backpropagation with Fletcher-Reeves updates

Syntax net.trainFcn = 'traincgf'
[net,tr] = train(net,...)

Description traincgf is a network training function that updates weight and
bias values according to conjugate gradient backpropagation with
Fletcher-Reeves updates.

net.trainFcn = 'traincgf'

[net,tr] = train(net,...)

Training occurs according to traincgf’s training parameters, shown
here with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.show 25 Epochs between displays (NaN for no
displays)

net.trainParam.showCommandLine 0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.searchFcn 'srchcha'Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for
linear search.

net.trainParam.alpha 0.001 Scale factor that determines sufficient
reduction in perf

1-410

traincgf

net.trainParam.beta 0.1 Scale factor that determines sufficiently large
step size

net.trainParam.delta 0.01 Initial step size in interval location step

net.trainParam.gama 0.1 Parameter to avoid small reductions in
performance, usually set to 0.1 (see srch_cha)

net.trainParam.low_lim 0.1 Lower limit on change in step size

net.trainParam.up_lim 0.5 Upper limit on change in step size

net.trainParam.maxstep 100 Maximum step length

net.trainParam.minstep 1.0e-6 Minimum step length

net.trainParam.bmax 26 Maximum step size

Network
Use

You can create a standard network that uses traincgf with
feedforwardnet or cascadeforwardnet.

To prepare a custom network to be trained with traincgf,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to
traincgf’s default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the
network with traincgf.

Examples Here a neural network is trained to predict median house prices.

[x,t] = house_dataset;
net = feedforwardnet(10,'traincgf');
net = train(net,x,t);
y = net(x)

Algorithms traincgf can train any network as long as its weight, net input, and
transfer functions have derivative functions.

1-411

traincgf

Backpropagation is used to calculate derivatives of performance perf
with respect to the weight and bias variables X. Each variable is
adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to
minimize the performance along the search direction. The line search
function searchFcn is used to locate the minimum point. The first
search direction is the negative of the gradient of performance. In
succeeding iterations the search direction is computed from the new
gradient and the previous search direction, according to the formula

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several
different ways. For the Fletcher-Reeves variation of conjugate gradient
it is computed according to

Z = normnew_sqr/norm_sqr;

where norm_sqr is the norm square of the previous gradient and
normnew_sqr is the norm square of the current gradient. See page 78 of
Scales (Introduction to Non-Linear Optimization) for a more detailed
discussion of the algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times
since the last time it decreased (when using validation).

1-412

traincgf

References Scales, L.E., Introduction to Non-Linear Optimization, New York,
Springer-Verlag, 1985

Definitions All the conjugate gradient algorithms start out by searching in the
steepest descent direction (negative of the gradient) on the first
iteration.

p g0 0= −

A line search is then performed to determine the optimal distance to
move along the current search direction:

x x pk k k k+ =1 α

Then the next search direction is determined so that it is conjugate to
previous search directions. The general procedure for determining the
new search direction is to combine the new steepest descent direction
with the previous search direction:

p g pk k k k= − + −β 1

The various versions of the conjugate gradient algorithm are
distinguished by the manner in which the constant βk is computed. For
the Fletcher-Reeves update the procedure is

βk
k
T

k

k
T

k

=
− −

g g

g g1 1

This is the ratio of the norm squared of the current gradient to the norm
squared of the previous gradient.

See [FlRe64] or [HDB96] for a discussion of the Fletcher-Reeves
conjugate gradient algorithm.

The conjugate gradient algorithms are usually much faster than
variable learning rate backpropagation, and are sometimes faster
than trainrp, although the results vary from one problem to another.
The conjugate gradient algorithms require only a little more storage

1-413

traincgf

than the simpler algorithms. Therefore, these algorithms are good for
networks with a large number of weights.

Try the Neural Network Design demonstration nnd12cg [HDB96] for an
illustration of the performance of a conjugate gradient algorithm.

See Also traingdm | traingda | traingdx | trainlm | traincgb | trainscg |
traincgp | trainoss | trainbfg

1-414

traincgp

Purpose Conjugate gradient backpropagation with Polak-Ribiére updates

Syntax net.trainFcn = 'traincgp'
[net,tr] = train(net,...)

Description traincgp is a network training function that updates weight and
bias values according to conjugate gradient backpropagation with
Polak-Ribiére updates.

net.trainFcn = 'traincgp'

[net,tr] = train(net,...)

Training occurs according to traincgp’s training parameters, shown
here with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.show 25 Epochs between displays (NaN for no
displays)

net.trainParam.showCommandLine 0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.searchFcn 'srchcha'Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for
linear search.

net.trainParam.alpha 0.001 Scale factor that determines sufficient reduction
in perf

1-415

traincgp

net.trainParam.beta 0.1 Scale factor that determines sufficiently large
step size

net.trainParam.delta 0.01 Initial step size in interval location step

net.trainParam.gama 0.1 Parameter to avoid small reductions in
performance, usually set to 0.1 (see srch_cha)

net.trainParam.low_lim 0.1 Lower limit on change in step size

net.trainParam.up_lim 0.5 Upper limit on change in step size

net.trainParam.maxstep 100 Maximum step length

net.trainParam.minstep 1.0e-6 Minimum step length

net.trainParam.bmax 26 Maximum step size

Network
Use

You can create a standard network that uses traincgp with
feedforwardnet or cascadeforwardnet. To prepare a custom network
to be trained with traincgp,

1 Set net.trainFcn to 'traincgp'. This sets net.trainParam to
traincgp’s default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the
network with traincgp.

Examples Examples

Here a neural network is trained to predict median house prices.

[x,t] = house_dataset;
net = feedforwardnet(10,'traincgp');
net = train(net,x,t);
y = net(x)

1-416

traincgp

Algorithms traincgp can train any network as long as its weight, net input, and
transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf
with respect to the weight and bias variables X. Each variable is
adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to
minimize the performance along the search direction. The line search
function searchFcn is used to locate the minimum point. The first
search direction is the negative of the gradient of performance. In
succeeding iterations the search direction is computed from the new
gradient and the previous search direction according to the formula

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several
different ways. For the Polak-Ribiére variation of conjugate gradient, it
is computed according to

Z = ((gX - gX_old)'*gX)/norm_sqr;

where norm_sqr is the norm square of the previous gradient, and
gX_old is the gradient on the previous iteration. See page 78 of Scales
(Introduction to Non-Linear Optimization, 1985) for a more detailed
discussion of the algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times
since the last time it decreased (when using validation).

1-417

traincgp

References Scales, L.E., Introduction to Non-Linear Optimization, New York,
Springer-Verlag, 1985

Definitions Another version of the conjugate gradient algorithm was proposed by
Polak and Ribiére. As with the Fletcher-Reeves algorithm, traincgf,
the search direction at each iteration is determined by

p g pk k k k= − + −β 1

For the Polak-Ribiére update, the constant βk is computed by

βk
k
T

k

k
T

k

=
Δ −

− −

g g

g g
1

1 1

This is the inner product of the previous change in the gradient with the
current gradient divided by the norm squared of the previous gradient.
See [FlRe64] or [HDB96] for a discussion of the Polak-Ribiére conjugate
gradient algorithm.

The traincgp routine has performance similar to traincgf. It is
difficult to predict which algorithm will perform best on a given
problem. The storage requirements for Polak-Ribiére (four vectors) are
slightly larger than for Fletcher-Reeves (three vectors).

See Also traingdm | traingda | traingdx | trainlm | trainrp | traincgf |
traincgb | trainscg | trainoss | trainbfg

1-418

traingd

Purpose Gradient descent backpropagation

Syntax net.trainFcn = 'traingd'
[net,tr] = train(net,...)

Description traingd is a network training function that updates weight and bias
values according to gradient descent.

net.trainFcn = 'traingd'

[net,tr] = train(net,...)

Training occurs according to traingd’s training parameters, shown
here with their default values:

net.trainParam.epochs 10 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.showCommandLine 0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.lr 0.01 Learning rate

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.min_grad 1e-10 Minimum performance gradient

net.trainParam.show 25 Epochs between displays (NaN for no
displays)

net.trainParam.time inf Maximum time to train in seconds

Network
Use

You can create a standard network that uses traingd with
feedforwardnet or cascadeforwardnet. To prepare a custom network
to be trained with traingd,

1 Set net.trainFcn to 'traingd'. This sets net.trainParam to
traingd’s default parameters.

1-419

traingd

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the
network with traingd.

See help feedforwardnet and help cascadeforwardnet for examples.

Algorithms traingd can train any network as long as its weight, net input, and
transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf
with respect to the weight and bias variables X. Each variable is
adjusted according to gradient descent:

dX = lr * dperf/dX

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times
since the last time it decreased (when using validation).

Definitions The batch steepest descent training function is traingd. The weights
and biases are updated in the direction of the negative gradient of
the performance function. If you want to train a network using batch
steepest descent, you should set the network trainFcn to traingd,
and then call the function train. There is only one training function
associated with a given network.

There are seven training parameters associated with traingd:

• epochs

• show

1-420

traingd

• goal

• time

• min_grad

• max_fail

• lr

The learning rate lr is multiplied times the negative of the gradient
to determine the changes to the weights and biases. The larger the
learning rate, the bigger the step. If the learning rate is made too large,
the algorithm becomes unstable. If the learning rate is set too small,
the algorithm takes a long time to converge. See page 12-8 of [HDB96]
for a discussion of the choice of learning rate.

The training status is displayed for every show iterations of the
algorithm. (If show is set to NaN, then the training status is never
displayed.) The other parameters determine when the training stops.
The training stops if the number of iterations exceeds epochs, if the
performance function drops below goal, if the magnitude of the gradient
is less than mingrad, or if the training time is longer than time seconds.
max_fail, which is associated with the early stopping technique, is
discussed in Improving Generalization.

The following code creates a training set of inputs p and targets t. For
batch training, all the input vectors are placed in one matrix.

p = [-1 -1 2 2; 0 5 0 5];
t = [-1 -1 1 1];

Create the feedforward network.

net = feedforwardnet(3,'traingd');

In this simple example, turn off a feature that is introduced later.

net.divideFcn = '';

1-421

traingd

At this point, you might want to modify some of the default training
parameters.

net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;

If you want to use the default training parameters, the preceding
commands are not necessary.

Now you are ready to train the network.

[net,tr] = train(net,p,t);

The training record tr contains information about the progress of
training.

Now you can simulate the trained network to obtain its response to the
inputs in the training set.

a = net(p)
a =

-1.0026 -0.9962 1.0010 0.9960

Try the Neural Network Design demonstration nnd12sd1 [HDB96]
for an illustration of the performance of the batch gradient descent
algorithm.

See Also traingdm | traingda | traingdx | trainlm

1-422

traingda

Purpose Gradient descent with adaptive learning rate backpropagation

Syntax net.trainFcn = 'traingda'
[net,tr] = train(net,...)

Description traingda is a network training function that updates weight and bias
values according to gradient descent with adaptive learning rate.

net.trainFcn = 'traingda'

[net,tr] = train(net,...)

Training occurs according to traingda’s training parameters, shown
here with their default values:

net.trainParam.epochs 10 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.lr 0.01 Learning rate

net.trainParam.lr_inc 1.05 Ratio to increase learning rate

net.trainParam.lr_dec 0.7 Ratio to decrease learning rate

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.max_perf_inc 1.04 Maximum performance increase

net.trainParam.min_grad 1e-10 Minimum performance gradient

net.trainParam.show 25 Epochs between displays (NaN for no
displays)

net.trainParam.showCommandLine 0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.time inf Maximum time to train in seconds

Network
Use

You can create a standard network that uses traingda with
feedforwardnet or cascadeforwardnet. To prepare a custom network
to be trained with traingda,

1-423

traingda

1 Set net.trainFcn to 'traingda'. This sets net.trainParam to
traingda’s default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the
network with traingda.

See help feedforwardnet and help cascadeforwardnet for examples.

Algorithms traingda can train any network as long as its weight, net input, and
transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance dperf
with respect to the weight and bias variables X. Each variable is
adjusted according to gradient descent:

dX = lr*dperf/dX

At each epoch, if performance decreases toward the goal, then the
learning rate is increased by the factor lr_inc. If performance increases
by more than the factor max_perf_inc, the learning rate is adjusted
by the factor lr_dec and the change that increased the performance
is not made.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times
since the last time it decreased (when using validation).

Definitions With standard steepest descent, the learning rate is held constant
throughout training. The performance of the algorithm is very sensitive
to the proper setting of the learning rate. If the learning rate is set

1-424

traingda

too high, the algorithm can oscillate and become unstable. If the
learning rate is too small, the algorithm takes too long to converge. It
is not practical to determine the optimal setting for the learning rate
before training, and, in fact, the optimal learning rate changes during
the training process, as the algorithm moves across the performance
surface.

You can improve the performance of the steepest descent algorithm if
you allow the learning rate to change during the training process. An
adaptive learning rate attempts to keep the learning step size as large
as possible while keeping learning stable. The learning rate is made
responsive to the complexity of the local error surface.

An adaptive learning rate requires some changes in the training
procedure used by traingd. First, the initial network output and error
are calculated. At each epoch new weights and biases are calculated
using the current learning rate. New outputs and errors are then
calculated.

As with momentum, if the new error exceeds the old error by more than
a predefined ratio, max_perf_inc (typically 1.04), the new weights
and biases are discarded. In addition, the learning rate is decreased
(typically by multiplying by lr_dec = 0.7). Otherwise, the new weights,
etc., are kept. If the new error is less than the old error, the learning
rate is increased (typically by multiplying by lr_inc = 1.05).

This procedure increases the learning rate, but only to the extent
that the network can learn without large error increases. Thus, a
near-optimal learning rate is obtained for the local terrain. When a
larger learning rate could result in stable learning, the learning rate is
increased. When the learning rate is too high to guarantee a decrease
in error, it is decreased until stable learning resumes.

Try the Neural Network Design demonstration nnd12vl [HDB96] for an
illustration of the performance of the variable learning rate algorithm.

Backpropagation training with an adaptive learning rate is
implemented with the function traingda, which is called just like
traingd, except for the additional training parameters max_perf_inc,

1-425

traingda

lr_dec, and lr_inc. Here is how it is called to train the previous
two-layer network:

p = [-1 -1 2 2; 0 5 0 5];
t = [-1 -1 1 1];
net = feedforwardnet(3,'traingda');
net.trainParam.lr = 0.05;
net.trainParam.lr_inc = 1.05;
net = train(net,p,t);
y = net(p)

See Also traingd | traingdm | traingdx | trainlm

1-426

traingdm

Purpose Gradient descent with momentum backpropagation

Syntax net.trainFcn = 'traingdm'
[net,tr] = train(net,...)

Description traingdm is a network training function that updates weight and bias
values according to gradient descent with momentum.

net.trainFcn = 'traingdm'

[net,tr] = train(net,...)

Training occurs according to traingdm’s training parameters, shown
here with their default values:

net.trainParam.epochs 10 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.lr 0.01 Learning rate

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.mc 0.9 Momentum constant

net.trainParam.min_grad 1e-10 Minimum performance gradient

net.trainParam.show 25 Epochs between showing progress

net.trainParam.showCommandLine 0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.time inf Maximum time to train in seconds

Network
Use

You can create a standard network that uses traingdm with
feedforwardnet or cascadeforwardnet. To prepare a custom network
to be trained with traingdm,

1 Set net.trainFcn to 'traingdm'. This sets net.trainParam to
traingdm’s default parameters.

1-427

traingdm

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the
network with traingdm.

See help feedforwardnet and help cascadeforwardnet for examples.

Algorithms traingdm can train any network as long as its weight, net input, and
transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf
with respect to the weight and bias variables X. Each variable is
adjusted according to gradient descent with momentum,

dX = mc*dXprev + lr*(1-mc)*dperf/dX

where dXprev is the previous change to the weight or bias.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times
since the last time it decreased (when using validation).

Definitions In addition to traingd, there are three other variations of gradient
descent.

Gradient descent with momentum, implemented by traingdm, allows
a network to respond not only to the local gradient, but also to recent
trends in the error surface. Acting like a lowpass filter, momentum
allows the network to ignore small features in the error surface. Without
momentum a network can get stuck in a shallow local minimum. With
momentum a network can slide through such a minimum. See page
12–9 of [HDB96] for a discussion of momentum.

1-428

traingdm

Gradient descent with momentum depends on two training parameters.
The parameter lr indicates the learning rate, similar to the simple
gradient descent. The parameter mc is the momentum constant that
defines the amount of momentum. mc is set between 0 (no momentum)
and values close to 1 (lots of momentum). A momentum constant of 1
results in a network that is completely insensitive to the local gradient
and, therefore, does not learn properly.)

p = [-1 -1 2 2; 0 5 0 5];
t = [-1 -1 1 1];
net = feedforwardnet(3,'traingdm');
net.trainParam.lr = 0.05;
net.trainParam.mc = 0.9;
net = train(net,p,t);
y = net(p)

Try the Neural Network Design demonstration nnd12mo [HDB96] for an
illustration of the performance of the batch momentum algorithm.

See Also traingd | traingda | traingdx | trainlm

1-429

traingdx

Purpose Gradient descent with momentum and adaptive learning rate
backpropagation

Syntax net.trainFcn = 'traingdx'
[net,tr] = train(net,...)

Description traingdx is a network training function that updates weight and bias
values according to gradient descent momentum and an adaptive
learning rate.

net.trainFcn = 'traingdx'

[net,tr] = train(net,...)

Training occurs according to traingdx’s training parameters, shown
here with their default values:

net.trainParam.epochs 10 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.lr 0.01 Learning rate

net.trainParam.lr_inc 1.05 Ratio to increase learning rate

net.trainParam.lr_dec 0.7 Ratio to decrease learning rate

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.max_perf_inc 1.04 Maximum performance increase

net.trainParam.mc 0.9 Momentum constant

net.trainParam.min_grad 1e-10 Minimum performance gradient

net.trainParam.show 25 Epochs between displays (NaN for no
displays)

net.trainParam.showCommandLine 0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.time inf Maximum time to train in seconds

1-430

traingdx

Network
Use

You can create a standard network that uses traingdx with
feedforwardnet or cascadeforwardnet. To prepare a custom network
to be trained with traingdx,

1 Set net.trainFcn to 'traingdx'. This sets net.trainParam to
traingdx’s default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the
network with traingdx.

See help feedforwardnet and help cascadeforwardnet for examples.

Algorithms traingdx can train any network as long as its weight, net input, and
transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf
with respect to the weight and bias variables X. Each variable is
adjusted according to gradient descent with momentum,

dX = mc*dXprev + lr*mc*dperf/dX

where dXprev is the previous change to the weight or bias.

For each epoch, if performance decreases toward the goal, then the
learning rate is increased by the factor lr_inc. If performance increases
by more than the factor max_perf_inc, the learning rate is adjusted
by the factor lr_dec and the change that increased the performance
is not made.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

1-431

traingdx

• Validation performance has increased more than max_fail times
since the last time it decreased (when using validation).

Definitions The function traingdx combines adaptive learning rate with momentum
training. It is invoked in the same way as traingda, except that it has
the momentum coefficient mc as an additional training parameter.

See Also traingd | traingda | traingdm | trainlm

1-432

trainlm

Purpose Levenberg-Marquardt backpropagation

Syntax net.trainFcn = 'trainlm'
[net,tr] = train(net,...)

Description trainlm is a network training function that updates weight and bias
values according to Levenberg-Marquardt optimization.

trainlm is often the fastest backpropagation algorithm in the toolbox,
and is highly recommended as a first-choice supervised algorithm,
although it does require more memory than other algorithms.

net.trainFcn = 'trainlm'

[net,tr] = train(net,...)

Training occurs according to trainlm’s training parameters, shown
here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.max_fail 6 Maximum validation failures

net.trainParam.min_grad 1e-7 Minimum performance gradient

net.trainParam.mu 0.001 Initial mu

net.trainParam.mu_dec 0.1 mu decrease factor

net.trainParam.mu_inc 10 mu increase factor

net.trainParam.mu_max 1e10 Maximum mu

net.trainParam.show 25 Epochs between displays (NaN for no
displays)

net.trainParam.showCommandLine 0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.time inf Maximum time to train in seconds

1-433

trainlm

Validation vectors are used to stop training early if the network
performance on the validation vectors fails to improve or remains the
same for max_fail epochs in a row. Test vectors are used as a further
check that the network is generalizing well, but do not have any effect
on training.

trainlm is the default training function for several network creation
functions including newcf, newdtdnn, newff, and newnarx.

Network
Use

You can create a standard network that uses trainlm with
feedforwardnet or cascadeforwardnet.

To prepare a custom network to be trained with trainlm,

1 Set net.trainFcn to 'trainlm'. This sets net.trainParam to
trainlm’s default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the
network with trainlm.

See help feedforwardnet and help cascadeforwardnet for examples.

Examples Here a neural network is trained to predict median house prices.

[x,t] = house_dataset;
net = feedforwardnet(10,'trainlm');
net = train(net,x,t);
y = net(x)

Algorithms trainlm supports training with validation and test vectors if the
network’s NET.divideFcn property is set to a data division function.
Validation vectors are used to stop training early if the network
performance on the validation vectors fails to improve or remains the
same for max_fail epochs in a row. Test vectors are used as a further
check that the network is generalizing well, but do not have any effect
on training.

1-434

trainlm

trainlm can train any network as long as its weight, net input, and
transfer functions have derivative functions.

Backpropagation is used to calculate the Jacobian jX of performance
perf with respect to the weight and bias variables X. Each variable is
adjusted according to Levenberg-Marquardt,

jj = jX * jX
je = jX * E
dX = -(jj+I*mu) \ je

where E is all errors and I is the identity matrix.

The adaptive value mu is increased by mu_inc until the change above
results in a reduced performance value. The change is then made to the
network and mu is decreased by mu_dec.

The parameter mem_reduc indicates how to use memory and speed to
calculate the Jacobian jX. If mem_reduc is 1, then trainlm runs the
fastest, but can require a lot of memory. Increasing mem_reduc to 2 cuts
some of the memory required by a factor of two, but slows trainlm
somewhat. Higher states continue to decrease the amount of memory
needed and increase training times.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• mu exceeds mu_max.

• Validation performance has increased more than max_fail times
since the last time it decreased (when using validation).

Definitions Like the quasi-Newton methods, the Levenberg-Marquardt algorithm
was designed to approach second-order training speed without having
to compute the Hessian matrix. When the performance function has

1-435

trainlm

the form of a sum of squares (as is typical in training feedforward
networks), then the Hessian matrix can be approximated as

H = JTJ

and the gradient can be computed as

g = JTe

where J is the Jacobian matrix that contains first derivatives of the
network errors with respect to the weights and biases, and e is a vector
of network errors. The Jacobian matrix can be computed through a
standard backpropagation technique (see [HaMe94]) that is much less
complex than computing the Hessian matrix.

The Levenberg-Marquardt algorithm uses this approximation to the
Hessian matrix in the following Newton-like update:

x x J J I J ek k
T T

+
−= − +1
1[]μ

When the scalar µ is zero, this is just Newton’s method, using the
approximate Hessian matrix. When µ is large, this becomes gradient
descent with a small step size. Newton’s method is faster and more
accurate near an error minimum, so the aim is to shift toward Newton’s
method as quickly as possible. Thus, µ is decreased after each successful
step (reduction in performance function) and is increased only when a
tentative step would increase the performance function. In this way,
the performance function is always reduced at each iteration of the
algorithm.

The original description of the Levenberg-Marquardt algorithm is
given in [Marq63]. The application of Levenberg-Marquardt to neural
network training is described in [HaMe94] and starting on page 12-19 of
[HDB96]. This algorithm appears to be the fastest method for training
moderate-sized feedforward neural networks (up to several hundred
weights). It also has an efficient implementation in MATLAB® software,
because the solution of the matrix equation is a built-in function, so its
attributes become even more pronounced in a MATLAB environment.

1-436

trainlm

Try the Neural Network Design demonstration nnd12m [HDB96] for
an illustration of the performance of the batch Levenberg-Marquardt
algorithm.

Limitations This function uses the Jacobian for calculations, which assumes that
performance is a mean or sum of squared errors. Therefore, networks
trained with this function must use either the mse or sse performance
function.

1-437

trainoss

Purpose One-step secant backpropagation

Syntax net.trainFcn = 'trainoss'
[net,tr] = train(net,...)

Description trainoss is a network training function that updates weight and bias
values according to the one-step secant method.

net.trainFcn = 'trainoss'

[net,tr] = train(net,...)

Training occurs according to trainoss’s training parameters, shown
here with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.show 25 Epochs between displays (NaN for no
displays)

net.trainParam.showCommandLine 0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.searchFcn 'srchcha'Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for
linear search.

net.trainParam.alpha 0.001 Scale factor that determines sufficient reduction
in perf

1-438

trainoss

net.trainParam.beta 0.1 Scale factor that determines sufficiently large
step size

net.trainParam.delta 0.01 Initial step size in interval location step

net.trainParam.gama 0.1 Parameter to avoid small reductions in
performance, usually set to 0.1 (see srch_cha)

net.trainParam.low_lim 0.1 Lower limit on change in step size

net.trainParam.up_lim 0.5 Upper limit on change in step size

net.trainParam.maxstep 100 Maximum step length

net.trainParam.minstep 1.0e-6 Minimum step length

net.trainParam.bmax 26 Maximum step size

Network
Use

You can create a standard network that uses trainoss with
feedforwardnet or cascadeforwardnet. To prepare a custom network
to be trained with trainoss:

1 Set net.trainFcn to 'trainoss'. This sets net.trainParam to
trainoss’s default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the
network with trainoss.

Examples Here a neural network is trained to predict median house prices.

[x,t] = house_dataset;
net = feedforwardnet(10,'trainoss');
net = train(net,x,t);
y = net(x)

Algorithms trainoss can train any network as long as its weight, net input, and
transfer functions have derivative functions.

1-439

trainoss

Backpropagation is used to calculate derivatives of performance perf
with respect to the weight and bias variables X. Each variable is
adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to
minimize the performance along the search direction. The line search
function searchFcn is used to locate the minimum point. The first
search direction is the negative of the gradient of performance. In
succeeding iterations the search direction is computed from the new
gradient and the previous steps and gradients, according to the
following formula:

dX = -gX + Ac*X_step + Bc*dgX;

where gX is the gradient, X_step is the change in the weights on the
previous iteration, and dgX is the change in the gradient from the last
iteration. See Battiti (Neural Computation, Vol. 4, 1992, pp. 141–166)
for a more detailed discussion of the one-step secant algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times
since the last time it decreased (when using validation).

References Battiti, R., “First and second order methods for learning: Between
steepest descent and Newton’s method,” Neural Computation, Vol. 4,
No. 2, 1992, pp. 141–166

Definitions Because the BFGS algorithm requires more storage and computation
in each iteration than the conjugate gradient algorithms, there is need

1-440

trainoss

for a secant approximation with smaller storage and computation
requirements. The one step secant (OSS) method is an attempt to
bridge the gap between the conjugate gradient algorithms and the
quasi-Newton (secant) algorithms. This algorithm does not store the
complete Hessian matrix; it assumes that at each iteration, the previous
Hessian was the identity matrix. This has the additional advantage
that the new search direction can be calculated without computing a
matrix inverse.

The one step secant method is described in [Batt92]. This algorithm
requires less storage and computation per epoch than the BFGS
algorithm. It requires slightly more storage and computation per
epoch than the conjugate gradient algorithms. It can be considered
a compromise between full quasi-Newton algorithms and conjugate
gradient algorithms.

See Also traingdm | traingda | traingdx | trainlm | trainrp | traincgf |
traincgb | trainscg | traincgp | trainbfg

1-441

trainr

Purpose Random order incremental training with learning functions

Syntax net.trainFcn = 'trainr'
[net,tr] = train(net,...)

Description trainr is not called directly. Instead it is called by train for networks
whose net.trainFcn property is set to 'trainr', thus:

net.trainFcn = 'trainr'

[net,tr] = train(net,...)

trainr trains a network with weight and bias learning rules with
incremental updates after each presentation of an input. Inputs are
presented in random order.

Training occurs according to trainr’s training parameters, shown here
with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.show 25 Epochs between displays (NaN for no
displays)

net.trainParam.showCommandLine 0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.time inf Maximum time to train in seconds

Network
Use

You can create a standard network that uses trainr by calling
competlayer or selforgmap. To prepare a custom network to be
trained with trainr,

1 Set net.trainFcn to 'trainr'. This sets net.trainParam to
trainr’s default parameters.

2 Set each net.inputWeights{i,j}.learnFcn to a learning function.

1-442

trainr

3 Set each net.layerWeights{i,j}.learnFcn to a learning function.

4 Set each net.biases{i}.learnFcn to a learning function. (Weight
and bias learning parameters are automatically set to default values
for the given learning function.)

To train the network,

1 Set net.trainParam properties to desired values.

2 Set weight and bias learning parameters to desired values.

3 Call train.

See help competlayer and help selforgmap for training examples.

Algorithms For each epoch, all training vectors (or sequences) are each presented
once in a different random order, with the network and weight and bias
values updated accordingly after each individual presentation.

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.

• Performance is minimized to the goal.

• The maximum amount of time is exceeded.

See Also train

1-443

trainrp

Purpose Resilient backpropagation

Syntax net.trainFcn = 'trainrp'
[net,tr] = train(net,...)

Description trainrp is a network training function that updates weight and bias
values according to the resilient backpropagation algorithm (Rprop).

net.trainFcn = 'trainrp'

[net,tr] = train(net,...)

Training occurs according to trainrp’s training parameters, shown
here with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.show 25 Epochs between displays (NaN for no
displays)

net.trainParam.showCommandLine 0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.lr 0.01 Learning rate

net.trainParam.delt_inc 1.2 Increment to weight change

net.trainParam.delt_dec 0.5 Decrement to weight change

net.trainParam.delta0 0.07 Initial weight change

net.trainParam.deltamax 50.0 Maximum weight change

1-444

trainrp

Network
Use

You can create a standard network that uses trainrp with
feedforwardnet or cascadeforwardnet.

To prepare a custom network to be trained with trainrp,

1 Set net.trainFcn to 'trainrp'. This sets net.trainParam to
trainrp’s default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the
network with trainrp.

Examples Here is a problem consisting of inputs p and targets t to be solved with
a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

A two-layer feed-forward network with two hidden neurons and this
training function is created.

Create and test a network.

net = feedforwardnet(2,'trainrp');

Here the network is trained and retested.

net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = net(p)

See help feedforwardnet and help cascadeforwardnet for other
examples.

1-445

trainrp

Algorithms trainrp can train any network as long as its weight, net input, and
transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf
with respect to the weight and bias variables X. Each variable is
adjusted according to the following:

dX = deltaX.*sign(gX);

where the elements of deltaX are all initialized to delta0, and gX is
the gradient. At each iteration the elements of deltaX are modified.
If an element of gX changes sign from one iteration to the next, then
the corresponding element of deltaX is decreased by delta_dec. If an
element of gX maintains the same sign from one iteration to the next,
then the corresponding element of deltaX is increased by delta_inc.
See Riedmiller, Proceedings of the IEEE International Conference on
Neural Networks (ICNN), San Francisco, 1993, pp. 586 to 591.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times
since the last time it decreased (when using validation).

References Riedmiller, Proceedings of the IEEE International Conference on Neural
Networks (ICNN), San Francisco, 1993, pp. 586–591

Definitions Multilayer networks typically use sigmoid transfer functions in the
hidden layers. These functions are often called “squashing” functions,
because they compress an infinite input range into a finite output
range. Sigmoid functions are characterized by the fact that their slopes
must approach zero as the input gets large. This causes a problem when
you use steepest descent to train a multilayer network with sigmoid

1-446

trainrp

functions, because the gradient can have a very small magnitude and,
therefore, cause small changes in the weights and biases, even though
the weights and biases are far from their optimal values.

The purpose of the resilient backpropagation (Rprop) training algorithm
is to eliminate these harmful effects of the magnitudes of the partial
derivatives. Only the sign of the derivative can determine the direction
of the weight update; the magnitude of the derivative has no effect
on the weight update. The size of the weight change is determined
by a separate update value. The update value for each weight and
bias is increased by a factor delt_inc whenever the derivative of the
performance function with respect to that weight has the same sign for
two successive iterations. The update value is decreased by a factor
delt_dec whenever the derivative with respect to that weight changes
sign from the previous iteration. If the derivative is zero, the update
value remains the same. Whenever the weights are oscillating, the
weight change is reduced. If the weight continues to change in the same
direction for several iterations, the magnitude of the weight change
increases. A complete description of the Rprop algorithm is given in
[ReBr93].

The following code recreates the previous network and trains it using
the Rprop algorithm. The training parameters for trainrp are epochs,
show, goal, time, min_grad, max_fail, delt_inc, delt_dec, delta0,
and deltamax. The first eight parameters have been previously
discussed. The last two are the initial step size and the maximum step
size, respectively. The performance of Rprop is not very sensitive to
the settings of the training parameters. For the example below, the
training parameters are left at the default values:

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net = feedforwardnet(3,'trainrp');
net = train(net,p,t);
y = net(p)

rprop is generally much faster than the standard steepest descent
algorithm. It also has the nice property that it requires only a modest

1-447

trainrp

increase in memory requirements. You do need to store the update
values for each weight and bias, which is equivalent to storage of the
gradient.

See Also traingdm | traingda | traingdx | trainlm | traincgp | traincgf |
traincgb | trainscg | trainoss | trainbfg

1-448

trainru

Purpose Unsupervised random order weight/bias training

Syntax net.trainFcn = 'trainru'
[net,tr] = train(net,...)

Description trainru is not called directly. Instead it is called by train for networks
whose net.trainFcn property is set to 'trainru', thus:

net.trainFcn = 'trainru'

[net,tr] = train(net,...)

trainru trains a network with weight and bias learning rules with
incremental updates after each presentation of an input. Inputs are
presented in random order.

Training occurs according to trainr’s training parameters, shown here
with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.show 25 Epochs between displays (NaN for no
displays)

net.trainParam.showCommandLine 0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.time Inf Maximum time to train in seconds

Network
Use

To prepare a custom network to be trained with trainru,

1 Set net.trainFcn to 'trainr'. This sets net.trainParam to
trainru’s default parameters.

2 Set each net.inputWeights{i,j}.learnFcn to a learning function.

3 Set each net.layerWeights{i,j}.learnFcn to a learning function.

1-449

trainru

4 Set each net.biases{i}.learnFcn to a learning function. (Weight
and bias learning parameters are automatically set to default values
for the given learning function.)

To train the network,

1 Set net.trainParam properties to desired values.

2 Set weight and bias learning parameters to desired values.

3 Call train.

Algorithms For each epoch, all training vectors (or sequences) are each presented
once in a different random order, with the network and weight and bias
values updated accordingly after each individual presentation.

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

See Also train | trainr

1-450

trains

Purpose Sequential order incremental training with learning functions

Syntax net.trainFcn = 'trains'
[net,tr] = train(net,...)

Description trains is not called directly. Instead it is called by train for networks
whose net.trainFcn property is set to 'trains', thus:

net.trainFcn = 'trains'

[net,tr] = train(net,...)

trains trains a network with weight and bias learning rules with
sequential updates. The sequence of inputs is presented to the network
with updates occurring after each time step.

This incremental training algorithm is commonly used for adaptive
applications.

Network
Use

You can create a standard network that uses trains for adapting by
calling perceptron or linearlayer.

To prepare a custom network to adapt with trains,

1 Set net.adaptFcn to 'trains'. This sets net.adaptParam to
trains’s default parameters.

2 Set each net.inputWeights{i,j}.learnFcn to a learning function.
Set each net.layerWeights{i,j}.learnFcn to a learning function.
Set each net.biases{i}.learnFcn to a learning function. (Weight
and bias learning parameters are automatically set to default values
for the given learning function.)

To allow the network to adapt,

1 Set weight and bias learning parameters to desired values.

2 Call adapt.

1-451

trains

See help perceptron and help linearlayer for adaption examples.

Algorithms Each weight and bias is updated according to its learning function after
each time step in the input sequence.

See Also train | trainb | trainc | trainr

1-452

trainscg

Purpose Scaled conjugate gradient backpropagation

Syntax net.trainFcn = 'trainscg'
[net,tr] = train(net,...)

Description trainscg is a network training function that updates weight and bias
values according to the scaled conjugate gradient method.

net.trainFcn = 'trainscg'

[net,tr] = train(net,...)

Training occurs according to trainscg’s training parameters, shown
here with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.show 25 Epochs between displays (NaN for no
displays)

net.trainParam.showCommandLine 0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.sigma 5.0e-5 Determine change in weight for second
derivative approximation

net.trainParam.lambda 5.0e-7 Parameter for regulating the
indefiniteness of the Hessian

Network
Use

You can create a standard network that uses trainscg with
feedforwardnet or cascadeforwardnet. To prepare a custom network
to be trained with trainscg,

1-453

trainscg

1 Set net.trainFcn to 'trainscg'. This sets net.trainParam to
trainscg’s default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the
network with trainscg.

Examples Here is a problem consisting of inputs p and targets t to be solved with
a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

A two-layer feed-forward network with two hidden neurons and this
training function is created.

net = feedforwardnet(2,'trainscg');

Here the network is trained and retested.

net = train(net,p,t);
a = net(p)

See help feedforwardnet and help cascadeforwardnet for other
examples.

Algorithms trainscg can train any network as long as its weight, net input, and
transfer functions have derivative functions. Backpropagation is used
to calculate derivatives of performance perf with respect to the weight
and bias variables X.

The scaled conjugate gradient algorithm is based on conjugate
directions, as in traincgp, traincgf, and traincgb, but this algorithm
does not perform a line search at each iteration. See Moller (Neural
Networks, Vol. 6, 1993, pp. 525–533) for a more detailed discussion of
the scaled conjugate gradient algorithm.

Training stops when any of these conditions occurs:

1-454

trainscg

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times
since the last time it decreased (when using validation).

References Moller, Neural Networks, Vol. 6, 1993, pp. 525–533

See Also traingdm | traingda | traingdx | trainlm | trainrp | traincgf |
traincgb | trainbfg | traincgp | trainoss

1-455

tribas

Purpose Triangular basis transfer function

Graph
and
Symbol

Syntax A = tribas(N,FP)

Description tribas is a neural transfer function. Transfer functions calculate a
layer’s output from its net input.

A = tribas(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)

and returns A, an S-by-Q matrix of the triangular basis function applied
to each element of N.

info = tribas('code') can take the following forms to return specific
information:

tribas('name') returns the name of this function.

tribas('output',FP) returns the [min max] output range.

tribas('active',FP) returns the [min max] active input range.

tribas('fullderiv') returns 1 or 0, depending on whether dA_dN is
S-by-S-by-Q or S-by-Q.

tribas('fpnames') returns the names of the function parameters.

1-456

tribas

tribas('fpdefaults') returns the default function parameters.

Examples Here you create a plot of the tribas transfer function.

n = -5:0.1:5;
a = tribas(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'tribas';

Algorithms a = tribas(n) = 1 - abs(n), if -1 <= n <= 1
= 0, otherwise

See Also sim | radbas

1-457

tritop

Purpose Triangle layer topology function

Syntax pos = triptop(dim1,dim2,...,dimN)

Description tritop calculates neuron positions for layers whose neurons are
arranged in an N-dimensional triangular grid.

pos = triptop(dim1,dim2,...,dimN) takes N arguments,

dimi Length of layer in dimension i

and returns an N-by-S matrix of N coordinate vectors, where S is the
product of dim1*dim2*...*dimN.

Examples This code creates and displays a two-dimensional layer with 40 neurons
arranged in an 8-by-5 triangular grid.

pos = tritop(8,5);
net = selforgmap([8 5],'topologyFcn','tritop');
plotsomtop(net)

See Also gridtop | hextop | randtop

1-458

unconfigure

Purpose Unconfigure network inputs and outputs

Syntax unconfigure(net)
unconfigure(net, 'inputs', i)
unconfigure(net, 'outputs', i)

Description unconfigure(net) returns a network with its input and output sizes
set to 0, its input and output processing settings and related weight
initialization settings set to values consistent with zero-sized signals.
The new network will be ready to be reconfigured for data of the same
or different dimensions than it was previously configured for.

unconfigure(net, 'inputs', i) unconfigures the inputs indicated by
the indices i. If no indices are specified, all inputs are unconfigured.

unconfigure(net, 'outputs', i) unconfigures the outputs indicated
by the indices i. If no indices are specified, all outputs are unconfigured.

Examples Here a network is configured for a simple fitting problem, and then
unconfigured.

[x,t] = simplefit_dataset;
net = fitnet(10);
view(net)
net = configure(net,x,t);
view(net)
net = unconfigure(net)
view(net)

See Also configure | isconfigured

1-459

vec2ind

Purpose Convert vectors to indices

Syntax ind2vec
vec2ind

Description ind2vec and vec2ind allow indices to be represented either by
themselves or as vectors containing a 1 in the row of the index they
represent.

vec2ind(vec) takes one argument,

vec Matrix of vectors, each containing a single 1

and returns the indices of the 1s.

Examples Here four vectors (each containing only one “1” element) are defined,
and the indices of the 1s are found.

vec = [1 0 0 0; 0 0 1 0; 0 1 0 1]
ind = vec2ind(vec)

See Also ind2vec

1-460

view

Purpose View neural network

Syntax view(net)

Description view(net) launches a window that shows your neural network
(specified in net) as a graphical diagram.

1-461

view

1-462

Index

IndexA
adapt function 1-2

B
backtracking search 1-347
boxdist function 1-10
Brent’s search 1-352

C
cascadeforwardnet function 1-13
catelements function 1-14
catsamples function 1-15
catsignals function 1-17
cattimesteps function 1-18
cellmat function 1-19
Charalambous’ search 1-357
closeloop function 1-20
combvec function 1-21
compet function 1-22
competlayer function 1-24
con2seq function 1-25
concur function 1-27
configure function 1-28
confusion function 1-30
conjugate gradient algorithms

Fletcher-Reeves update 1-413
Polak-Ribi\x8e re update 1-418
Powell-Beale restarts 1-409

convwf function 1-32

D
defaultderiv function 1-34
demonstrations

nnd12cg 1-414
nnd12m 1-437
nnd12mo 1-429
nnd12sd1 1-362

nnd12sd1 batch gradient 1-422
nnd12vl 1-425

disp function 1-36
display function 1-37
dist function 1-38
distdelaynet function 1-41
divideblock function 1-42
divideind function 1-43
divideint function 1-45
dividerand function 1-46
dividetrain function 1-47
dotprod function 1-48

E
elliot2sig function 1-51
elliotsig function 1-50
elmannet function 1-52
errsurf function 1-54
extendts function 1-55

F
feedforwardnet function 1-56
fitnet function 1-58
fixunknowns function 1-59
Fletcher-Reeves update 1-413
formwb function 1-62
fpderiv function 1-63
fromnndata function 1-65

G
gadd function 1-67
gdivide function 1-68
gensim function 1-69
getelements function 1-70
getsamples function 1-71
getsignals function 1-72
getsiminit function 1-73
gettimesteps function 1-75

Index-1

Index

getwb function 1-76
gmultiply function 1-77
gnegate function 1-78
golden section search 1-362
gpu2nndata function 1-79
gradient descent algorithm

batch 1-420
gridtop function 1-81
gsqrt function 1-82
gsubtract function 1-83

H
hardlim function 1-84
hardlims function 1-86
hextop function 1-88
hybrid bisection cubic search 1-367

I
ind2vec function 1-89
init function 1-90
initcon function 1-92
initial step size function 1-447
initlay function 1-94
initlvq function 1-96
initnw function 1-97
initsompc function 1-99
initwb function 1-100
initzero function 1-101
input vectors

dimension reduction 1-284
isconfigured function 1-103

J
Jacobian matrix 1-436

L
layrecnet function 1-104

learncon function 1-105
learngd function 1-108
learngdm function 1-111
learnh function 1-114
learnhd function 1-117
learning rates

adaptive 1-425
optimal 1-425

learnis function 1-120
learnk function 1-123
learnlv1 function 1-126
learnlv2 function 1-129
learnos function 1-132
learnp function 1-135
learnpn function 1-138
learnsom function 1-141
learnwh function 1-148
Levenberg-Marquardt algorithm 1-435
line search functions

backtracking search 1-347
Brent’s search 1-352
Charalambous’ search 1-357
golden section search 1-362
hybrid bisection cubic search 1-367

linearlayer function 1-151
linkdist function 1-153
logsig function 1-155
lvqnet function 1-157
lvqoutputs function 1-159

M
mae function 1-160
mandist function 1-162
mapminmax function 1-164
mapstd function 1-167
maximum step size function 1-447
maxlinlr function 1-170
meanabs function 1-171
meansqr function 1-172

Index-2

Index

midpoint function 1-173
minmax function 1-174
mse function 1-175

N
narnet function 1-177
narxnet function 1-178
nctool function 1-180
negdist function 1-181
netinv function 1-183
netprod function 1-185
netsum function 1-187
network function 1-189
newgrnn function 1-195
newlind function 1-197
newpnn function 1-199
newrb function 1-201
newrbe function 1-203
Newton’s method 1-436
nftool function 1-205
nncell2mat function 1-206
nncorr function 1-207
nndata function 1-209
nndata2gpu function 1-211
nndata2sim function 1-213
nnsize function 1-214
nnstart function 1-215
nntool function 1-216
nntraintool function 1-217
noloop function 1-218
normalization

inputs and targets 1-165
mean and standard deviation 1-168

normc function 1-219
normprod function 1-220
normr function 1-222
nprtool function 1-223
ntstool function 1-224
num2deriv function 1-225

num5deriv function 1-227
numelements function 1-229
numfinite function 1-230
numnan function 1-231
numsamples function 1-232
numsignals function 1-233
numtimesteps function 1-234

O
one step secant algorithm 1-441
openloop function 1-235

P
patternnet function 1-236
perceptron function 1-237
perform function 1-239
plotconfusion function 1-241
plotep function 1-242
ploterrcorr function 1-243
ploterrhist function 1-244
plotes function 1-245
plotfit function 1-246
plotinerrcorr function 1-247
plotpc function 1-248
plotperform function 1-250
plotpv function 1-252
plotresponse function 1-255
plotroc function 1-256
plotsom function 1-258
plotsomhits function 1-259
plotsomnc function 1-261
plotsomnd function 1-261 1-263
plotsomplanes function 1-265
plotsompos function 1-267
plotsomtop function 1-269
plottrainstate function 1-271
plotv function 1-273
plotvec function 1-274

Index-3

Index

plotwb function 1-275
pnormc function 1-277
Polak-Ribi\x8e re update 1-418
poslin function 1-278
Powell-Beale restarts 1-409
preparets function 1-280
principal component analysis 1-284
processpca function 1-282
prune function 1-286
prunedata function 1-288
purelin function 1-290

Q
quant function 1-292
quasi-Newton algorithm 1-347

R
radbas function 1-293
radbasn function 1-295
randnc function 1-297
randnr function 1-298
rands function 1-299
randtop function 1-303
regression function 1-304
removeconstantrows function 1-305
removerows function 1-308
revert function 1-310

S
sae function 1-313
satlin function 1-315
satlins function 1-317
scalprod function 1-319
selforgmap function 1-321
separatewb function 1-323
seq2con function 1-324
setelements function 1-325
setsamples function 1-326

setsignals function 1-327
setsiminit function 1-328
settimesteps function 1-330
setwb function 1-331
sim function 1-332
sim2nndata function 1-340
soft max transfer function 1-341
softmax function 1-341
squashing functions 1-446
srchbac function 1-343
srchbre function 1-348
srchcha function 1-353
srchgol function 1-358
srchhyb function 1-363
sse function 1-368
staticderiv function 1-370
sumabs function 1-372
sumsqr function 1-373

T
tansig function 1-374
tapdelay function 1-376
timedelaynet function 1-377
tonndata function 1-378
train function 1-380
trainb function 1-388
trainbfg function 1-390
trainbfgc function 1-394
trainbr function 1-398
trainc function 1-404
traincgb function 1-406
traincgf function 1-410
traincgp function 1-415
traingd function 1-419
traingda function 1-423
traingdm function 1-427
traingdx function 1-430
trainlm function 1-433
trainoss function 1-438

Index-4

Index

trainr function 1-442
trainrp function 1-444
trainru function 1-449
trains function 1-451
trainscg function 1-453
transformation matrix 1-284
tribas function 1-456
tritop function 1-458

U
unconfigure function 1-459

V
variable learning rate algorithm 1-425
vec2ind function 1-460
view function 1-461

Index-5

	toc
	Functions — Alphabetical List
	Index

