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INTRODUCTION

Crystal size distribution (CSD) studies of igneous and meta-
morphic rocks have become more popular recently partly be-
cause it has been realized that they are a quantitative method
of looking at igneous processes that is complementary to
geochemical studies (e.g., Cashman 1990; Higgins 1999; Marsh
1998). Another reason may be the recent availability of simple
methods of calculating CSDs from measurements in two di-
mensions, such as thin sections (e.g., Higgins 2000; Peterson
1996).

The crystal content of a rock cannot exceed 100%, hence,
as with chemical analyzes, we must always be aware of the
closure problem. Closure for an individual phase can also oc-
cur at less than 100% crystals. For instance, if a rock is made
of 50% plagioclase and 50% olivine then closed-system pro-
cesses, such as simple textural coarsening, cannot change the
phase proportions—they are each fixed at a maximum of 50%.
Closure has not, so far, been discussed in published CSD stud-
ies. However, I will show that it must be considered in all CSD
studies, both of volcanic and plutonic rocks.

The closure effects described in this paper are unrelated to
the “Inherited correlation” effect of Pan (2001). That study was
flawed by inappropriate use of CSD equations [see comment
by Marsh et al. (2002)].

CLOSURE AND CONSTANT PHASE PROPORTION IN
CSD MEASUREMENTS

We are concerned here with the effects of constant phase
proportion on CSDs, however, I will show later that even quite
large variations in volumetric phase proportions can show the
same effects. Clearly, closure is just a special case of this more
general problem, where the volumetric phase proportion is equal
to one.

The volumetric proportion of phase i, Vi, is calculated by
integration of the volume of all the crystals:

V n L L dLii =
∞

∫σ ( ) 3

0

               (1)

where σ = shape factor of phase i, equal to the ratio of the
crystal volume to that of a cube of side L (see below), and ni(L)
= population density of crystals of phase i for size L. There are
many different definitions of crystal size, but in this paper I
will follow Higgins (2000) and other authors, and define size
as the length of the longest axis of the smallest rectangular
parallelepiped that encloses the crystal.

The shape factor, σ, is expanded into a more applicable form:

σ = [1 – Ω (1 – π/6)]IS/L2                       (2)

where Ω is the roundness factor, which varies from 0 for rect-
angular parallelepipeds to 1 for a triaxial ellipsoid. This defini-
tion accords with the roundness factor mentioned in Higgins
(2000). S, I, and L are the short, intermediate, and long dimen-* E-mail: mhiggins@uqac.ca
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sions (or axes) of the parallelepiped or ellipsoid. Obviously,
most crystals have a more complex shape, but we are concerned
here just with a statistical measure. However, Equation 2 should
not be applied to crystals with concave surfaces or holes, as
they do not necessarily have volumes that lie between that of
an ellipsoid and an equivalent parallelepiped.

Equation 1 applies to all CSDs. Marsh (1988) showed that
CSDs in many simple magmatic systems are described by the
equation:

Ni(L) = ni0e–L/Ci                (3)

where ni0 = final nucleation density and Ci = a constant called
the characteristic length. It is equal to the mean length of all
the crystals in a straight CSD that extends from zero to infinite
size. This distribution is linear on a graph of ln(population den-
sity) {ln[ni(L)]} vs. size (L; Fig. 1a). The intercept is ln(ni0)
and the slope is –1/Ci.

 Combining Equations 1 and 3 gives

V n e L dLL C
i i

i= −
∞

∫σ 0
3

0

/
                (4)

which can be integrated to give (Marsh 1988)

Vi = 6σni0Ci
4                (5)

It should be emphasized that this equation is for straight
CSDs and that volumetric phase proportions calculated in this
way are sensitive to errors in the shape factor.

A simple straight line CSD is shown in Figure 1a. At low

volumetric phase proportion, for example 1%, the slope of the
CSD can change independently of the intercept. For example,
if all crystals grow at the same rate and nucleation increases
exponentially, then the CSD will move up without changing
slope. Once the crystal content reaches 100%, then closure is
reached and the CSD is locked. It can only move if the ratio
between crystals of different sizes is changed. That is, some
crystals must become smaller if others are to enlarge.

A family of straight CSDs for 100% crystallized material
define a fan (Fig. 1b ). Portions of this fan appear to describe
rotation of the CSD around a point commonly close to the left
of the diagram. The CSDs together outline a concave-up enve-
lope. Straight CSDs cannot exist in the area above this line.
Figure 1c shows another view of the same effect in terms of
characteristic length vs. intercept. All straight CSDs can be
defined by their intercept and characteristic length. Closure lim-
its describe a curve for each crystal shape. Straight CSDs can
only exist below this line.

Closure for a single phase can occur at less that 100% volu-
metric crystal content, if there are chemical or physical con-
straints on further crystallization. For instance, if a rock contains
50% plagioclase and 50% olivine, then closure for each phase
is at 50%. Thermal conditions may also limit crystal content to
a maximum value. If the crystals of a phase in a sample are far
from their closure limit, then the intercept and slope can change
independently giving two degrees of freedom. However, as the
crystal content approaches the closure value, then any process that
changes the slope of the CSD must also change the intercept—in
this situation, there is essentially only one degree of freedom. There-
fore, crystals must dissolve (melt) or divide into sub-grains to en-

FIGURE 1. (a) The closure problem in CSDs, illustrated for cubic crystals. A straight CSD with a slope of –0.57 (characteristic length 1.73
mm) and an intercept of –8.6 has a volumetric phase proportion of 1%. If the intercept is increased to –4.0, for example by crystal growth and
exponential increase in nucleation rate, then the crystal content will reach 100% and textural changes will stop. At 100% crystals, the CSD is
locked and cannot move into the grey area of the diagram. (b) A fan of straight-line CSDs with 100% crystals is tangential to a concave-up
curve. Straight CSDs cannot exist in the grey part of the diagram. (c) Straight CSDs can be represented by a point on a graph of characteristic
length (–1/slope) vs. intercept. Possible CSDs for 100% crystals proscribe a curve. CSDs can exist below, but not above this line. The position
of the line differs for different shapes, here indicated by the aspect ratios of rectangular parallelepipeds and spheres. It is assumed here that the
crystals completely fill the volume.
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able changes in the slope and intercept of the CSD.
Natural examples of fanning CSDs may not exactly resemble

Figure 1b, because the volumetric phase proportion may vary
(Cashman and Marsh 1988; Hammer et al. 1999). However, as
will be seen later in the example, even in this situation the cor-
relation between characteristic length and intercept is still evi-
dent and is little perturbed even by quite large variations in
volumetric phase proportions.

VERIFICATION OF CSD DATA

Equations 1 and 5 are a useful way to verify that CSDs have
been correctly converted from two-dimensional data, by com-
paring the measured value of the phase proportion with that
defined by the CSD. However, caution must be exercised as
the errors in phase proportion estimated from CSDs can be sig-
nificant, especially for CSDs in which much of the phase vol-
ume is contributed by the largest crystals. Such crystals are not
numerous and hence their population density is not well known.

Equation 5 can be used directly for straight CSDs. For com-
plex, curved CSDs the corresponding volumetric proportion
of the phase can be calculated from the shape factor, the width
and mid-points of the size intervals, and the population density
of those intervals. For these calculations, a discrete form of
Equation 1 is as follows:

V n L L Wi i j j j= ∑σ ( ) 3                (6)

where j is the number of interval, Wj is the width of the inter-
val, and L

–
j is the mean size of the interval j. It should be re-

membered that ln[nI(L
–

j)] is plotted in a CSD diagram. This
calculation has been incorporated into version 1.2 of the pro-
gram CSDCorrections (Higgins 2000; http://dsacom.uqac.ca/
~mhiggins/csdcorrections.html).

The volumetric proportion of the phase in a rock is equal to
the area proportion of the phase in any section (Delesse 1847).
The fabric of the rock and the orientation of the section are not
important—any plane will give the same area. Crystal inter-
section areas are commonly measured at the same time as the
intersection length and width of the crystals. They can also be
determined by point counting or by automatic image analysis.
The total crystal area is independent of the length or width
measurements used to construct CSDs. Volumetric phase pro-
portions can also be calculated in some cases by mass balance
of chemical compositions or even density (for two-phase rocks).

EXAMPLE—LAVAS FROM MOUNT TARANAKI

A series of 14 samples of andesite lava and tuff from Mt.
Taranaki (Egmont volcano), New Zealand, provide a good test
of the methods developed above (Higgins 1996). Although in-
dividual CSDs are slightly curved, they are straight enough
that both Equations 5 and 6 can be used to calculate the volu-
metric phase proportions, and the results of the two methods
can be compared with the actual volumetric phase proportion.

The original plagioclase intersection data were recalculated
using the methods of Higgins (2000; Fig. 2a). The crystal shape
was determined following Higgins (1994): the crystals are

euhedral hence the roundness equals zero (parallelepipeds). The
mode of the intersection width/length ratios is 0.33 hence the
ratio I/S = 3.0. The skewness of the intersection width/length
ratios suggested that the ratio L/I is close to one, giving an
overall aspect ratio of 1:3:3. The actual volumetric phase pro-
portions were determined from the total area of the plagioclase
crystals in thin section. There is a good correlation between
the actual volumetric phase proportion and that determined from
the CSD using Equation 6 and the CSD calculated with the
program CSDCorrections (Fig. 2b). Most of the CSDs are al-
most straight, hence the volumetric phase proportion also can
be calculated with Equation 5, using the slope and characteris-
tic length from the regression of the actual CSD. Again there is
a good correlation between the actual volumetric phase pro-
portions and the calculated values, except for two slightly more
curved CSDs (Fig. 2c). The overall agreement between the two
methods of calculating the volumetric phase proportions from
the CSD and the values determined independently from the
crystal areas, indicates that the CSDs have been correctly mea-
sured and can now be interpreted.

It is difficult to compare a series of samples on a “classic”
CSD diagram such as Figure 2a as they as they all tend to over-
lap. Another way of looking at the variation between straight
or almost straight CSDs is to regress the CSD and plot the in-
tercept against the characteristic length (Fig. 2d)—these pa-
rameters were used to calculate the volumetric phase per cent
used in Figure 2c. It is clear that despite the relatively low volu-
metric phase proportion of plagioclase, and its variability (10–
30%), the correlation between intercept and characteristic length
is the most important component of the variation in this dia-
gram. The variation normal to the closure limit is much less
evident and is controlled by the volumetric phase proportions.

There are several better ways of looking at these data. One
such graph plots characteristic length against volumetric phase
proportion (Fig. 2e). This diagram has the advantage that it is
completely accessible. That is, there are no forbidden zones, as
is the case for the slope vs. characteristic length diagram (e.g.,
Figs. 1b and 2d). This accessibility is because the two param-
eters are completely independent.

The Taranaki CSDs fall into three groups. Fanthams Peak
lavas have the smallest characteristic lengths and volumetric
phase proportions. This area is the youngest part of the vol-
cano, hence it would be expected that the lavas have lower
residence times and are crystal poor. The Burrell ash (sample
12) also falls in this group suggesting that the current magma
chamber may be similar or identical to that which produced
other lavas of Fanthams Peak. The Staircase lavas have the
greatest characteristic lengths. This result indicates that the
magma chamber was evolving slowly at this time, either be-
cause it was large or because the eruption rate was slow. The
Summit and Castle lavas have intermediate characteristic
lengths, but the greatest range in volumetric phase abundance.
The most crystal-rich samples are from the base of thick flows,
suggesting either that there was crystal settling in the lava flows
or that the first part of the magma chamber to be sampled was
richer in plagioclase.
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CONCLUSIONS AND RECOMMENDATIONS

(1) Closure limits form an easily calculated, convenient, and
useful reference for CSD studies. They indicate how much lib-
erty is possible for CSD movement during petrologically im-
portant processes. They can also show if correlated
characteristic lengths (or slopes) and intercepts of straight CSDs
are significant or not. Closure limits should be indicated on
published CSDs where possible.

(2) Calculation of volumetric phase proportions from CSDs

can be used to verify that CSDs have been correctly determined
from two-dimensional measurements. Common errors, such as
in the determination of crystal shapes or by the use of inappro-
priate equations, can be easily recognized and corrected.

(3) It is commonly observed that there is a strong correla-
tion between the characteristic length and intercept of CSDs.
Restricted variations in volumetric phase proportions can ac-
count for this effect. A more informative diagram may be that
of characteristic length vs. volumetric phase proportion.

FIGURE 2. CSD data from 14 samples of andesite lava, Egmont volcano, Mt. Taranaki, New Zealand (Higgins 1996). Original 2D data have
been converted to 3D values using the program CSDCorrections 1.2 (Higgins 2000). (a) Crystal size distribution diagrams. Most individual
CSDs are almost straight. However, the envelope of CSDs describes a curve. This is the effect described as CSD fanning. (b) Comparison of
volumetric phase proportion in percent determined from the total area of crystals in thin section (measured) vs. that calculated from the CSD and
crystal shape using Equation 6. (c) Comparison of measured volumetric phase proportion vs. that calculated for a straight CSD with intercept
and slope derived from a regression of the actual CSD using Equation 5. The two samples that lie above the correlation line are more strongly
curved that the other samples. (d) Characteristic length vs. intercept of the regressed CSDs. Samples cannot lie above the closure limit. Although
the Taranaki samples are far from the closure limit, there is a strong correlation between characteristic length and intercept. The prefix NZ has
been omitted from the labels. (e) Volumetric phase proportion vs. characteristic length. The different groups of lavas are clearly separated in this
diagram.
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