
Runtime Monitoring of Stream Logic Formulae

Sylvain Hallé(B) and Raphaël Khoury

Laboratoire d’informatique formelle, Université du Québec à Chicoutimi,
Chicoutimi, Canada

shalle@acm.org, rkhoury@uqac.ca

Abstract. We introduce a formal notation for the processing of event
traces called Stream Logic (SL). A monitor evaluates a Boolean condi-
tion over an input trace, while a filter outputs events from an input trace
depending on some monitor’s verdict; both constructs can be freely com-
posed. We show how all operators of Linear Temporal Logic, as well as
the parametric slicing of an input trace, can be written as Stream Logic
constructs.

1 Introduction

Trace validation is performed in various areas of computer science. For exam-
ple, in programming, analyzing a trace of events can be used to determine the
success of a test run [2] or for debugging purposes to ensure that methods of an
object have been called in the correct order [7]; similarly, a trace can represent
a recorded interaction between a client and a web service and one can verify
that each client interacts properly with the server according to some predefined
protocol [6]. Providing a verdict dynamically, as the events are produced by the
system, is its realtime counterpart called runtime monitoring.

Several notations have been developed to describe the set of valid traces
specific to each use case. Regular expressions are supported by tools like MOP [7];
Monpoly [4], BeepBeep [6] and ProM [8] employ Linear Temporal Logic (LTL)
or first-order extensions thereof; Logscope [5] and RuleR [3] use a language based
on μ-calculus.

Reasoning about properties on traces can sometimes prove difficult. It is well
known, for example, that there exist properties for which neither a “true” nor a
“false” verdict can be given for any finite prefix of a trace; however, depending on
the notation used, identifying such properties may be complex. Hence in LTL,
apart from trivial cases that are easy to spot (the formula GF p is one such
example), the general problem reduces to satisfiability solving and belongs to
the PSPACE-complete class.

In this paper, we propose a reformulation of formal trace specifications using
different base concepts, with runtime monitoring and partial evaluation of trace
prefixes in mind. The result is a formal notation for the processing of event

The authors acknowledge the financial support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

c© Springer International Publishing Switzerland 2016
J. Garcia-Alfaro et al. (Eds.): FPS 2015, LNCS 9482, pp. 251–258, 2016.
DOI: 10.1007/978-3-319-30303-1 15

rkhoury@uqac.ca

252 S. Hallé and R. Khoury

traces called Stream Logic (SL), detailed in Sect. 2. SL defines two basic objects,
called monitors and filters. A monitor evaluates a Boolean condition over an
input trace, while a filter outputs events from an input trace depending on
some monitor’s verdict, and both constructs can be freely composed. The formal
semantics of SL is defined, and a few syntactical identities are also presented.

We then proceed to highlight some of the advantages of SL over other nota-
tions. In Sect. 3, we show how SL subsumes LTL by emulating each of its oper-
ators, and describe how conclusions about a monitor’s possible outcome can
be drawn through purely syntactical manipulations. Finally, Sect. 4 describes a
proof-of-concept implementation of a Stream Logic processor showing the feasi-
bility of the approach on a number of use cases. In particular, our SL interpreter
provides order-of-magnitude speed gains compared to a tool applying the clas-
sical recursive semantics of LTL to monitor a trace.

2 A Calculus for Event Streams

In this section, we describe the formal notation and semantics of Stream Logic, a
language for expressing both conditions and filters on finite traces of events. We
shall first present each concept intuitively in Sect. 2.1, and then show in Sect. 2.2
the formal semantics of the complete system.

2.1 Basic Constructs

A trace of events is a finite sequence of atomic events, represented as a, b, . . . ,
taken from some finite set of symbols. Traces will be designated as m =
m1,m2, . . . ,mn. We assume there is a set of predicates p, q, r, . . . , which each
return either true (�) or false (⊥) for each possible event. When the context is
clear, an event symbol a will also stand for the predicate that returns true when-
ever its input is symbol a, and false otherwise. For a trace m = m1,m2, . . . , we let
mk be the trace obtained from m and starting at the k-th symbol: mk,mk+1,

Monitors. The first fundamental concept of SL is that of a monitor. A monitor
ϕ takes a trace m = m1,m2, . . . mn as an input, and returns as an output a
sequence v = v1, v2, . . . , where vi ∈ {�,⊥}. This is noted m : ϕ. Informally, a
monitor is fed messages from m one by one, and at any moment, can be queried
for its current state, which by definition is the last symbol appended to v. Hence
a monitor queried multiple times without being fed any new message in between
will return the same symbol. By definition, a monitor that has not been fed any
message returns a third, special value noted ?.

In the following, we will consider a few simple monitors. The first is the “true”
monitor, which outputs the sequence �,�, We will abuse notation and use
the � symbol to designate this monitor. Similarly, we have the monitors ⊥ and ?.
Finally, we have the constant monitor, noted c for some constant, which, for any
trace m = m1,m2, . . . , outputs the sequence v = v1, v2, . . . , where vi = � if
mi = c, and vi = ⊥ if mi �= c.

rkhoury@uqac.ca

Runtime Monitoring of Stream Logic Formulae 253

These monitors can be combined to produce compound results using the
classical Boolean connectives. Given a trace m = m1,m2, . . . and two moni-
tors ϕ and ψ producing sequences vϕ and vψ, the monitor ϕ ∧ ψ produces the
sequence vϕ∧ψ that is the pairwise conjunction of symbols in each monitor’s
output sequence. The case of disjunction and negation monitors can be defined
in the expected way.

Clearly, if ϕ has read k symbols, its output can contain at most k symbols.
However, as we shall see, each monitor need not to produce their output symbols
at the same time. The conjunction monitor can only output symbol i if monitors
ϕ and ψ have both output symbol i; otherwise, the conjunction monitor must
delay the output of symbol i until both values are available (or until a conclusion
can be drawn anyway, such as when one of the monitors returns ⊥). This entails
that a monitor can be fed an input message, and not produce the corresponding
output symbol immediately.

We also introduce additional binary connectives for monitors. The first is
operator ∧1. Informally, the monitor ϕ ∧1 ψ returns the value of the first of ϕ
or ψ that is no longer undefined. In the case where ϕ and ψ both take a value
at the same time, ∧1 behaves like ∧. Connective ∨1 is defined similarly with
respect to ∨.

Filters. The second important construct in SL is the filter. The filter is an
operator which, given some monitor ϕ and an input trace m, returns a subtrace
retaining only the symbols that match a specific condition. Formally, let m =
m1,m2, . . . be a message trace, and v = v1, v2, . . . be the output sequence for
monitor ϕ on that trace. The expression

m :
∞
ϕ

constructs from m the subtrace made only of symbols mi such that vi = �.
Hence, the filter ∞

c∨d produces the subtrace made only of symbols c or d.
The ∞ symbol in the top part of the fraction indicates that one is to take

all messages from m that satisfy ϕ. We can also indicate to return only one
particular message by replacing ∞ by a number. Hence k

ϕ returns only the k-th
message that satisfies ϕ (i.e. m′

k).
Filters and monitors can be chained; that is, the output of a filter can be

given as the input for a monitor, or another filter. If f is a filter and ϕ is a
monitor, then m : f : ϕ is the monitor that evaluates ϕ on trace m, but is being
fed only the input symbols that are returned by f .

Consider for example the following monitor, assuming an input sequence m:

1
b ∧ (

2
� : c

) : �

The filter this time retains for the input trace only symbols mi that satisfy two
conditions. The first is that mi = b. The second is itself a compound monitor,
that is given as its input trace the sequence m′ = mi,mi+1, This sequence

rkhoury@uqac.ca

254 S. Hallé and R. Khoury

Table 1. The formal semantics of SL. In this recursive definition, f and f ′ are arbitrary
filters and ϕ and ψ are arbitrary monitors.

first goes through a filter that retains only its second message (i.e. mi+1), and
passes it on to the constant monitor c; this monitor outputs the symbol � only
if mi+1 = c. Hence the filter will return the first message mi such that mi = b
and mi+1 = c. The end monitor outputs the � symbol whenever it receives a
message from that filter. The end result is that the monitor returns � as soon as
the property “some b is immediately followed by a c” is observed at least once.

2.2 Semantics

Now that we have described intuitively the basic constructs of SL, we shall for-
mally define the semantics of the language; this is done in Table 1. The notation
[[m,ϕ]] designates the output trace produced by feeding the input trace m to
monitor ϕ. Similarly, the notation [[m, f]] defines the output trace produced by
feeding m to filter f . Since [[·]] represents a trace, we use the subscript notation
[[·]]i to denote the i-th event of that output.

An interesting side effect of this semantics is that it defines a form of buffering
for events to be processed by monitors or filters, without the need for managing
these buffers explicitly in the notation. As an example, let us consider the filter
expression ∞

1
c :�

. Let us first apply the finite semantics to determine the output
of this filter on the input trace made of the single symbol a. Working from the
inside expression outwards, one realizes that [[a, 1

c]] = ε; this propagates outwards
and leads to the conclusion that the filter outputs nothing. However, while the
top-level filter outputs nothing after receiving the first event, one can see that it

rkhoury@uqac.ca

Runtime Monitoring of Stream Logic Formulae 255

outputs a after receiving c. In other words, events are implicitly “buffered” by
some monitors and some filters until some condition allows them to be released.

3 Applications

In this section, we show potential uses of SL in various applications. We con-
centrate on a reduction to Linear Temporal Logic, the possibility of simplifying
monitor expressions, and the characterization of monitorable properties in a
purely syntactical way.

3.1 Linear Temporal Logic

As a first application of SL, we show how temporal operators from Linear Tem-
poral Logic can be rewritten using the concepts of filters and monitors.

The first case is the F (“eventually”) operator, which we can write as:

Fϕ � 1
ϕ

: �

In this case, the filter 1
ϕ will create a subtrace retaining only the first message that

satisfies ϕ and discarding all others. On that trace, we evaluate the expression �,
which will return true as soon as it reads one message from the trace (otherwise
the whole expression evaluates to ?).

This translation also conveys the intuitive meaning of the operator: until
a message satisfying ϕ is read, Fϕ is not yet true, but can become so in the
future (and can never become false). Despite the existence of a single undefined
value, the filter tells us whether this value can turn true in the future (when
the expression at the right of the filter is �), or turn false in the future (when
the expression at the right of the filter is ⊥), and hence “simulate” four-valued,
finite-trace semantics for LTL.

Similarly, for X, the monitor simply returns the value of ϕ on the trace made
of the second message, which is written as:

Xϕ � 2
� : ϕ

Finally, operator U (“until”) requires slightly more work:

ϕUψ � 1
¬ϕ

: ⊥ ∧1
1
ψ

: �

The translation of U builds two subtraces from an input trace m. The first
one retains the first message of m that does not satisfy ϕ. The left-hand side of
∧1 hence returns ⊥ as soon as a message from m is read that does not satisfy
ϕ. Similarly, the right-hand side of ∧1 returns � as soon as a message from m is
read that satisfies ψ. Using these definitions, one can recursively translate any
LTL expression into an equivalent filter expression.

rkhoury@uqac.ca

256 S. Hallé and R. Khoury

3.2 Identities and Monitor Simplification

A number of identities on filters and monitors can be derived from the semantics
defined in the previous section.

The first identities apply on filters. For instance, it is clear that the monitor
⊥, when used as the condition for a filter, will result in nothing being output;
this can be expressed as:

m :
k

⊥ ≡ ε (1)

Dually, passing an input trace through a constant filter, is equivalent to this
constant filter.

f : ⊥ ≡ ⊥ (2)

Identities can also be defined for monitors. For example, it is straightforward
to conclude that a monitor ϕ given the empty trace is equivalent to the constant
monitor ?, which never outputs any event.

ε : ϕ ≡ ? (3)

These are a few examples of syntactical identities that can be derived from
monitors and filters. These identities can be then applied in a straightforward
way to perform simplification of filter and monitor expressions to reason about
their possible verdicts. As an example, consider the LTL formula GF p. In the
context of monitoring finite prefixes of traces, a monitor for this formula must
return ? on every message it reads. Realizing this fact using standard techniques
involves, for example, the construction of the corresponding Büchi automaton
and the discovery that neither state is labelled as accepting. However, writing
this expression in SL yields:

m :
1

(
1
p⊥

)⊥ ≡ m :
1
⊥⊥ by (2)

≡ ε : ⊥ by (1)
≡ ? by (3)

Hence we have seen how, by purely syntactical means, it is possible to simplify
the original monitor down to the constant ?. This shall be distinguished from
the monitor that performs a computation that just happens to return ? all the
time.

4 Implementation and Experiments

To assess the feasibility of the approach, we implemented a runtime moni-
tor/filter based on the concepts described in this paper. The implementation

rkhoury@uqac.ca

Runtime Monitoring of Stream Logic Formulae 257

Fig. 1. Total running time with respect to messages received for various traces on
sample properties.

is made of 1,600 lines of Java code independent of any external library, and is
publicly available online.1

We ran a simple benchmark comparing our proof-of-concept implementation
of Stream Logic with the latest version of BeepBeep2, another Java-based run-
time monitor written by one of the authors. BeepBeep was chosen among other
existing monitors for a number of reasons: first, it is capable of accepting events
made of parameter-value pairs in XML format; second, it is also implemented in
Java (eliminating differences caused by the implementation language) and has
roughly the same size in lines of code; finally, it uses a completely different eval-
uation algorithm, described in [6], which uses the recursive semantics of Linear
Temporal Logic to monitor specifications.

We followed the same methodology as described in [1]. We built a dataset
consisting of traces of randomly-generated events, with each event being made
of up to ten random parameters, labelled p0, . . . , p9 each carrying five possible
values. Each trace has a length between 1 and 100,000 events, and 50 such traces
were produced. Two properties were then verified on these traces. Property #1
is G p0 �= 0, and simply asserts that in every event, parameter p0, when present,
is never equal to 0. Property #2 is G (p0 = 0 → X p1 = 0): it expresses the fact
that whenever p0 = 0 in some event, the next event is such that p1 = 0.

Each property was written both as an SL expression and as an LTL formula,
and these were sent respectively to our proof-of-concept implementation of an
SL engine and to BeepBeep. The running time for evaluating these properties
on each trace was computed and plotted in Fig. 1.

Two major observations can be made from these preliminary results. First, the
SL engine, globally, performs faster than BeepBeep for a majority of properties
and traces: in the case of P1, BeepBeep averages 5,000 events per second, and SL
obtains roughly 25,000. However, the gap between both tools widens, both as the
trace lengthens and as the property to process becomes more complex. In the case

1 https://bitbucket.org/sylvainhalle/streamlogic.
2 http://sourceforge.net/projects/beepbeep, version 1.7.6.

rkhoury@uqac.ca

https://bitbucket.org/sylvainhalle/streamlogic
http://sourceforge.net/projects/beepbeep

258 S. Hallé and R. Khoury

of P2, SL still handles about 2,000 events per second, while BeepBeep is down at
approximately 280.

5 Conclusion

In this paper, we have shown a formal notation for the processing of event traces
called Stream Logic (SL). The distinguishing point of SL is that it is based upon
two simple concepts (filter and monitor), which, when freely combined, suffice to
support all operators of Linear Temporal Logic. We have shown experimentally
on a sample dataset how the application of the formal semantics of SL yields an
evaluation algorithm with better running time compared to the traditional LTL
evaluation algorithm presented in past literature. The promising results obtained
on the proof-of-concept implementation discussed in this paper lead to a number
of extensions and improvements over the current method. In particular,we shall
investigate whether there exists a characterization of monitorable or enforceable
properties based on syntactical properties of SL expressions.

References

1. Barre, B., Klein, M., Soucy-Boivin, M., Ollivier, P.-A., Hallé, S.: MapReduce for
parallel trace validation of LTL properties. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 184–198. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-35632-2 20

2. Barringer, H., Havelund, K.: TraceContract: a scala DSL for trace analysis. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer,
Heidelberg (2011)

3. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring:
from eagle to RuleR. J. Logic Comput. 20(3), 675–706 (2010)

4. Basin, D., Klaedtke, F., Müller, S.: Policy monitoring in first-order temporal logic.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 1–18.
Springer, Heidelberg (2010)

5. Groce, A., Havelund, K., Smith, M.H.: From scripts to specifications: the evolution
of a flight software testing effort. In: Kramer, J., Bishop, J., Devanbu, P.T., Uchitel,
S. (eds.) ICSE (2), pp. 129–138. ACM (2010)

6. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts
with data. IEEE Trans. Serv. Comput. 5(2), 192–206 (2012)

7. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the
MOP runtime verification framework. STTT 14(3), 249–289 (2012). doi:10.1007/
s10009-011-0198-6

8. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES,
XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP,
vol. 72, pp. 60–75. Springer, Heidelberg (2010)

rkhoury@uqac.ca

http://dx.doi.org/10.1007/978-3-642-35632-2_20
http://dx.doi.org/10.1007/978-3-642-35632-2_20
http://dx.doi.org/10.1007/s10009-011-0198-6
http://dx.doi.org/10.1007/s10009-011-0198-6

